GEN-MKT-18-7897-A
Apr 13, 2021 | Blogs, Environmental / Industrial | 0 comments
Read time: 4 minutes
Introduction to cannabis: analysis
Cannabis is a broad umbrella of classification that includes both hemp and marijuana. Check out a recent blog that lays out the definitions. This blog will focus on the common criteria we look at when conducting cannabis testing, including potency, pesticides and mycotoxins.
Potency: how do you test for it?
Based on individual state regulatory requirements in the US, the potency of commercial cannabis products must be reported. The percentage of THC is printed on cannabis product labels after being certified by a licensed cannabis testing facility. The methodology for obtaining cannabis potency values can vary based on the analytical technique and instrumentation used, which gives testing facilities options for customizing or streamlining their workflows. While marijuana potency testing can vary, hemp analysis has to be accurate, or the crop is considered cannabis and subject to federal confiscation and fines. The US, however, lacks standardized methods to assess products for potency and safety. That’s a big problem for the labs that are tasked with doing the testing. There have been many challenges in the uniformity of potency results across testing sites. Some manufacturers will go to the lab that gives them the highest potency results. Pesticides, mycotoxins and terpenes, oh my!
As states in the US struggle to set standards for testing, both consumers and retailers are becoming increasingly discerning. Because of the variability and diversity of the matrix composition of samples—which can include cannabinoids, terpenes, sugars, fatty acids and more—analyzing cannabis and hemp for pesticides can be daunting. This is especially true for high-throughput cannabis and hemp residue testing. If you want to learn more about this topic, check out our tips and tricks for pesticide residue analysis in cannabis. Stay tuned for more blogs and information on the analysis of cannabis and hemp.
RUO-MKT-18-13032-A
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network