Environmental / Industrial

Total quality assurance is critical for environmental scientists who seek to identify, monitor, and detect trace chemical compounds and pollutants to meet government, regulatory, and industry standards. Stay ahead on all things PFAS from the latest compounds, analytical challenges, and even regulations. Learn about the workflows and interact with the top researchers in this rapidly evolving field.

  • Sorting

  • Filters

Take out the PFAS in our takeout

Take out the PFAS in our takeout

Per- and polyfluoroalkyl substances (PFAS) were first detected in wildlife1 and oceanic waters2 in the early 2000s. Recently, however, these chemicals have been found in school uniforms,3 cosmetics4 and food contact materials,5 shifting what was initially considered an environmental issue to a public health crisis. As concerns have grown about the toxicological impact of long-term PFAS exposure on human health, questions about food-borne exposure have surged, especially since these chemicals are used in disposable food packaging materials, non-stick cookware and even in food processing machinery.

The secrets of recycling: PFAS and 6PPD

The secrets of recycling: PFAS and 6PPD

Recycling and reusing items is generally accepted as the “right” thing to do. But what if there were unintended, negative consequences to recycling? For example, old car tires are often ground down and reused for synthetic turf, with roughly 40,000 tires used per field.1 However, car tires contain the chemical 6PPD,5 which is converted by ozone to a quinone compound 6PPD-quinone (6PPD-Q) and enters river systems where it is toxic to coho salmon. In addition, some studies have detected per- and polyfluorinated alkyl substances (PFAS)— the” forever chemicals”—in artificial turf,1,4 which means it may be a source of PFAS found in nearby water supplies and potentially in drinking water.

Telling the PFAS story with pine needles

Telling the PFAS story with pine needles

As an ever-expanding group of chemicals, per- and polyfluoroalkyl substances (PFAS) require novel techniques to monitor their current and historical presence in the environment. Concerns over exposure to PFAS chemicals continue to grow, with some having known toxic characteristics and the potential effects of others remaining unknown.1 In addition, while PFAS are one of the most persistent synthetic chemicals to date, most of them hardly degrade in the environment.2 So, how long do traces of PFAS last in our environment? Two tools used to help answer this question are active samplers and passive samplers.

Back to the new basics: Part 3 | LC vs. LC-MS and what it means for your lab

Back to the new basics: Part 3 | LC vs. LC-MS and what it means for your lab

In this final installment of our “Back to the new basics” series, we take one more look at analytical techniques and best practices in the lab, and opportunities to improve efficiency. Here, we explore the basic principles of high-performance liquid chromatography (LC) and liquid chromatography mass spectrometry (LC-MS), and how these techniques can affect a lab’s efficiency and productivity.