GEN-MKT-18-7897-A
May 24, 2021 | Blogs, Environmental / Industrial | 0 comments
Read time: 4 minutes
Cannabis strains not only have different effects, but also serve different purposes. In the mainstream world, cannabis is grouped into 3 distinct strains: Indica, Sativa and hybrid. Indica strains are of Hindu Kush Mountain origins, and they are high in tetrahydrocannabinol (THC) content and dense cannabidiol (CBD). They are often believed to be relaxing and are used in pain management. Sativa strains, on the other hand, have a more energizing effect, and hybrid strains are a combination of Indica and Sativa.1
Many in the cannabis industry are beginning to step away from these generic references to strains, however, as these substances do not meet the scientific definition of a strain, which is a term more related to bacteria or viruses, and they are instead opting for the term “chemovars” (chemical varieties).2-3
What’s in a name?
Chemovar names as we know them are loosely based on smell and on anecdotal consumer experience rather than on chemical fingerprints. For example, Sunburn Popcorn and OG Popcorn share a buttery popcorn smell, which may have inspired their names, but statistical analysis—both non-targeted and targeted at just the cannabinoids—reveals that their chemical fingerprints are actually dissimilar.
At present, chemovars are separated based on cannabinoids and terpene profiles. However, similar to wine varieties, chemovars can be extremely different depending on where they are grown. Even their effects can vary. For instance, in a recent Meet the Experts webinar, Application Scientist Karl Oetjen of SCIEX delved into how body reactions to cannabis can be dependent on where the plant is grown.
The cannabis plant is a living organism and reacts to differences in growing environments, producing different levels of cannabinoids, terpenes and metabolites depending on the stressors that are present. Gorilla Glue grown in California may be different from Gorilla Glue grown in Colorado because of the nutrients used, indoor vs. outdoor growing or light exposure, for instance.
With all of this in mind, it’s clear that chemovar names don’t mean much to an analytical scientist, since chemovars with similar names can be very different. Alas, there is no easy way to classify cannabis chemovars, which leads to what is known as the entourage effect.
Entourage effect basics
The entourage effect is the synergistic relationship between chemicals that produce a particular feeling. Entourage effect analytical studies can be massively complex with a lot of data mining. Statistical analysis similar to chemical fingerprinting can help separate different chemovars from one another by focusing primarily on terpenes/cannabinoid interactions and amounts.
Using an analytical tool called accurate mass spectrometry and non-targeted analysis, we can tease apart the differences between chemovars. A non-targeted analysis is the least biased because it’s looking for everything in the cannabis plant and can give you insights into the particular variety. It identifies unknowns rather than just looking at cannabinoids and terpenes.
A non-targeted study actually showed that chemovar identification based on just the cannabinoid profile doesn’t work, and that there is no exclusive chemical fingerprint between different varieties because there is overlap. For example, a particular sample of OG Kush smoked in Colorado may actually be more similar to Tangerine Sunrinse in California than OG Kush in California. During the study, over 3,400 chemical features were identified in the chemovar during non-targeted analysis, which really digs into the components that may direct the entourage effect.
References
RUO-MKT-18-13188-A
In a recent webinar, which is now available on-demand, Holly Lee powerful strategies to tackle complex residue testing. From boosting throughput to fine-tuning method sensitivity, Holly shared key ways to maximize performance across large pesticide panels.
Whether we are raising glasses of rosé in a vineyard in France or enjoying a lager in a casual street restaurant in China, it is likely that the last thing on many people’s minds is the chemical risks from their beverage. Unless you work in food science, then it might actually be the first thing.
As PFAS regulations tighten globally, laboratory managers are navigating a complex economic landscape. Whether operating in a commercial or non- commercial setting, the pressure to deliver accurate, defensible, and timely PFAS data is mounting. At SCIEX we understand that the right technology can turn this regulatory challenge into a strategic opportunity.
Posted by
You must be logged in to post a comment.
Share this post with your network