GEN-MKT-18-7897-A
Member
When you think about calibration of a mass spectrometer, there are actually two aspects to consider. There is the accuracy of the calibration (that it is correct when calibration is performed) and the stability or precision of the mass calibration (that it remains correct over time).
For calibration precision or stability in quadrupole Time of Flight (QTOF) instruments, it is critical that your instrument is thermally stable and in a room with good environmental controls. Mass spectrometers use many different high voltage power supplies which take time to “warm up” and TOF instruments require stable temperature for stable mass calibration. Avoid placing your system directly under the HVAC vent or near large windows with exposure to direct sunlight. For highest overall mass accuracy performance, you always want to make sure you keep the covers on your instrument and that the instrument has had sufficient time to warm up after the instrument has been turned off and pumped down before performing mass calibration.
For calibration accuracy, we have two automatic ways to calibrate the instrument.
In either strategy, both MS and MS/MS modes are monitored and recalibrated. For more detailed information on calibration please refer to the Mass Calibration Tutorial for Analyst software that can be found C:\Program Files\Analyst\Help\Software Guides\Mass Calibration Tutorial.pdf.
In addition to all of the engineering work that goes into making SCIEX QTOF systems extremely mass stable, there are also two functions that run continuously behind the scenes and correct for any micro-fluctuations: Dynamic Background Calibration (DBC); and Inter-Sample Calibration.
With DBC, the background ions present in the MS data are constantly monitored and the calibration equation for the instrument is adjusted every 0.8 secs to ensure these background ions stay at a constant m/z. These ions are not fixed; they are determined dynamically for every run and for every sample and are constantly updated. This means that a separate calibrant does not need to be added during the LC-MS run to maintain a stable calibration, which simplifies instrument acquisition. Note that for DBC to be functional, a TOF MS experiment needs to be included in the method.
With inter-sample calibration, the software assesses the first 30 cycles of MS data of the previous file and determines the background ions. Then this is compared to the first 30 cycles of the next file and the calibration is adjusted to account for any drift between runs.
Note that in both cases the adjustments that are made to the calibration based on the MS data are automatically translated to the MS/MS calibration to ensure all acquisition modes are maintained in calibration. For MS/MS, only the acquisition mode (high sensitivity vs high resolution) that was monitored during the calibration runs or the previous files will be re-calibrated.
RUO-MKT-18-5208-A
Comment below on this article and our team will answer your questions.
nice
You must be logged in to post a comment.
Share this post with your network