https://sciex.com/content/SCIEX/na/us/en


Not all cannabis is created equal: cannabis strains explained

May 24, 2021 | Blogs, Environmental / Industrial | 0 comments

Read time: 4 minutes

Cannabis strains not only have different effects, but also serve different purposes. In the mainstream world, cannabis is grouped into 3 distinct strains: Indica, Sativa and hybrid. Indica strains are of Hindu Kush Mountain origins, and they are high in tetrahydrocannabinol (THC) content and dense cannabidiol (CBD). They are often believed to be relaxing and are used in pain management. Sativa strains, on the other hand, have a more energizing effect, and hybrid strains are a combination of Indica and Sativa.1

Many in the cannabis industry are beginning to step away from these generic references to strains, however, as these substances do not meet the scientific definition of a strain, which is a term more related to bacteria or viruses, and they are instead opting for the term “chemovars” (chemical varieties).2-3

What’s in a name?

Chemovar names as we know them are loosely based on smell and on anecdotal consumer experience rather than on chemical fingerprints. For example, Sunburn Popcorn and OG Popcorn share a buttery popcorn smell, which may have inspired their names, but statistical analysis—both non-targeted and targeted at just the cannabinoids—reveals that their chemical fingerprints are actually dissimilar.

At present, chemovars are separated based on cannabinoids and terpene profiles. However, similar to wine varieties, chemovars can be extremely different depending on where they are grown. Even their effects can vary. For instance, in a recent Meet the Experts webinar, Application Scientist Karl Oetjen of SCIEX delved into how body reactions to cannabis can be dependent on where the plant is grown.

 

 

The cannabis plant is a living organism and reacts to differences in growing environments, producing different levels of cannabinoids, terpenes and metabolites depending on the stressors that are present. Gorilla Glue grown in California may be different from Gorilla Glue grown in Colorado because of the nutrients used, indoor vs. outdoor growing or light exposure, for instance.

With all of this in mind, it’s clear that chemovar names don’t mean much to an analytical scientist, since chemovars with similar names can be very different. Alas, there is no easy way to classify cannabis chemovars, which leads to what is known as the entourage effect.

Entourage effect basics

The entourage effect is the synergistic relationship between chemicals that produce a particular feeling. Entourage effect analytical studies can be massively complex with a lot of data mining. Statistical analysis similar to chemical fingerprinting can help separate different chemovars from one another by focusing primarily on terpenes/cannabinoid interactions and amounts.

Using an analytical tool called accurate mass spectrometry and non-targeted analysis, we can tease apart the differences between chemovars. A non-targeted analysis is the least biased because it’s looking for everything in the cannabis plant and can give you insights into the particular variety. It identifies unknowns rather than just looking at cannabinoids and terpenes.

A non-targeted study actually showed that chemovar identification based on just the cannabinoid profile doesn’t work, and that there is no exclusive chemical fingerprint between different varieties because there is overlap. For example, a particular sample of OG Kush smoked in Colorado may actually be more similar to Tangerine Sunrinse in California than OG Kush in California. During the study, over 3,400 chemical features were identified in the chemovar during non-targeted analysis, which really digs into the components that may direct the entourage effect.

References

  1. Russo, Ethan B. “Cannabinoids in the Management of Difficult to Treat Pain.” Therapeutics and Clinical Risk Management Volume 4 (2008): 245–59. https://doi.org/10.2147/tcrm.s1928
  2. Russo, Ethan B., and Jahan Marcu. “Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads.” Cannabinoid Pharmacology, 2017, 67–134. https://doi.org/10.1016/bs.apha.2017.03.004
  3. Lewis, Mark A., Ethan B. Russo and Kevin M. Smith. “Pharmacological Foundations of Cannabis Chemovars.” Planta Medica 84, no. 04 (2017): 225–33. https://doi.org/10.1055/s-0043-122240

RUO-MKT-18-13188-A

Questions and answers to help improve your mycotoxin analysis

During a recent webinar I shared method details for mycotoxin analysis on the SCIEX 7500 system. In this blog i will share the Q&A for the submitted questions that we did not have chance to answer during the live webinar.

A 2-fold revolution: MS approaches for the bioanalysis of oligonucleotide therapeutics

In 1998, the US Food and Drug Administration (FDA) approved fomivirsen as the first therapeutic oligonucleotide therapeutic. This approval marked a revolution of mechanism of action discovered decades before finally coming to fruition. Since then, the landscape of chemical modifications of oligonucleotides, conjugations and formulations has evolved tremendously, contributing to improvements in stability, efficacy and safety. Today, more than a dozen antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) drugs are on the market, most of which are designated as orphan drugs for treating rare genetic diseases.

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Posted by

Senior Applications Scientist, SCIEX. Diana Tran specializes in LC-MS/MS method development as an applications scientist at SCIEX. For the past 4 years, she has been actively involved in cannabis testing analysis and has had a hand in almost every cannabis method developed at SCIEX since then. Diana has been field tested in testing labs across the US, making connections in cannabis testing labs and acting as a resource for analytical chemists. She is always looking for new cannabuds—feel free to reach out and start a conversation.

Tags


0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial