GEN-MKT-18-7897-A
Oct 19, 2020 | Blogs, Environmental / Industrial, Food / Beverage | 0 comments
Access to clean wholesome water is a basic human right. Humans have engineered incredible methods to collect, filter, purify, store and distribute water to billions of people worldwide, but does this mean that our water is completely safe to drink? Also, how do concentrations of water contaminants differ from source to source?
Water quality testing aims to ensure the water from our household taps and supermarket shelves is safe and free from pesticides and other contaminants, but how much do we know about the contents of our water, and what are the advantages of using mass spectrometry to identify and quantify contaminants in water samples?
To help answer some of these questions, we’ve collected 5 infographics that shed some light on the state of our household water.
1. The cleanest and dirtiest water in the US
We wanted to start with an infographic that puts water quality into perspective. Using data from 2011, the image demonstrates the varying quality of drinking water at different water utilities, even somewhere as developed as the US.
The data behind this infographic took into account 4 key considerations:
2. ACTEW Water’s drinking water quality report
Crossing the Pacific, the next infographic moves away from an objective study of water quality at various utilities to a summary of an Australian utility company, ACTEW Water (now known as Icon Water) that presented the numbers behind supplying 163,000 customers with water every day of the year.
It’s interesting to see the safeguarding steps taken to protect against contaminants (including pathogenic microorganisms) from a utilities perspective.
According to the infographic, 7 steps occur before customers receive the water:
The end goal of the current processing techniques at the time is to produce the best-quality, most wholesome water.
The challenge is ensuring the utmost efficiency during the treatment process and that what comes out of the consumer’s tap is fit for consumption. The steps taken in the treatment and processing of raw water into drinking water must be monitored at each stage to make sure that they are working effectively. For example, a water treatment process may include an activated carbon filter plant that, when in operation, will remove pesticides from the raw water.
Routine monitoring of the water upstream and downstream of this plant, using mass spectrometry technology, will determine the effectiveness of the pesticide removal process. Now known as Icon Water, the utility recently published its 2015 Water Quality Report detailing the chemical composition of drinking water in Canberra, Australia.
3. Water: 21st-century challenges
For the 6th World Water Forum in 2012, Suez Environment created this infographic to show the challenges of a rising population, increasing poverty and growing demand for clean drinking water.
Based on this infographic, it is clear that nations and their water providers have an enormous responsibility to produce the amount of wholesome water required to meet demand. To help satisfy the increasing volume requirements for clean water, an untargeted water screening approach using the X500R QTOF System from SCIEX can be used to identify any potential contaminants in new water sources.
4. Why and how to invest in clean water
In this infographic, Allianz provides the numbers behind why investing in clean water not only is good for our health but also makes good financial sense for businesses and investors.
Again, the points most pertinent to this discussion are the facts surrounding water pollution. With so many contaminants being discharged into coastal water, lakes and rivers, how will our household water ever reach a consistent level of sanitation and safety throughout the world?
While we’ve touched on it a couple of times, an efficient water treatment process is paramount to the production of wholesome drinking water, and this is an area where a mass spectrometer can play a critical role. Sample throughput and turnaround are key drivers in the selection of an appropriate mass spectrometer for water testing. This technical note about screening for unknown contaminants in untreated tap water provides more information.
5. Not a drop to drink: America’s water crisis
We conclude with an infographic that puts into perspective the amount of water used by each of us on average. There’s not a lot to add to this one, but it does provide a lot of facts about how integral water is to sanitation, agriculture and general health. In my opinion, it shows a comparison of water consumption and carbon footprints, and it demonstrates how much care our water supplies require and how fragile the ecosystem is despite the water-based nature of our planet.
Learn more about SCIEX drinking water solutions, visit our webpage.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
In today’s rapidly evolving food industry, the role of food testing laboratories has never been more critical. Ensuring the safety, quality, and authenticity of food products is paramount, and this responsibility falls heavily on the shoulders of laboratory managers. The economics of food testing—encompassing everything from high-throughput pesticide screening to advanced research on alternative protein sources—plays a pivotal role in shaping the operational efficiency and financial health of these laboratories.
Imagine having a tech expert at your fingertips to solve computer issues or a fitness trainer guiding you through workouts from the comfort of your home. In today’s fast-paced world, the ability to provide and receive service and support remotely is no longer a luxury but a necessity. Whether it’s troubleshooting a software issue, repairing a device, offering customer assistance, or enjoying the convenience of telehealth as a private individual, remote capabilities have revolutionized how businesses operate and how individuals get help
Posted by
You must be logged in to post a comment.
Share this post with your network