GEN-MKT-18-7897-A
Jul 14, 2023 | Blogs, LC, Pharma, SCIEX OS software, ZenoTOF 7600 system | 0 comments
Read Time: 3 minutes
So, you need a new liquid chromatography-mass spectrometry (LC-MS) system for your metabolite identification (metID) studies, and you are not sure which option is right for you. This blog provides an overview of the metID solutions offered by SCIEX, so you can make the best decision for your organization.
This is the first in a series of blogs intended to help you choose a system that meets your pharmaceutical research and development needs. We hope you find their guidance useful.
Let’s start with a simple question: Which of the following would help you sleep well at night?
We have great news for you: SCIEX has solutions for enabling both A and B. Let’s take a closer look.
Scenario A Let’s say you are looking for a system that will run larger batches of samples, and your analytes typically fragment well using collision-induced dissociation (CID), allowing confident identification of the site of metabolism without the need for additional confirmatory testing.
For a complex analysis, the requirements are relatively straightforward, and the priorities are probably ease of use and a robust system that does the job day in and day out. For this scenario, SCIEX recommends using the ExionLC 2.0+ system coupled to the X500R QTOF system, SCIEX OS software and maintenance with SCIEX service and support. The workflow described in the technical note Targeted high-resolution metabolite screening workflows demonstrates the performance you can expect from this solution.
Scenario B Suppose you have several samples where clear identification of the site of metabolism is not possible using CID. In this case, the use of a secondary analytical technique, such as nuclear magnetic resonance (NMR), is often required to meet regulatory requirements. Since this approach can be both time-consuming and expensive, an LC-MS system with more analytical power is ideal. Potent therapeutics is another common challenge in this type of scenario, which makes method sensitivity a key requirement for detecting low-abundant metabolites.
In these circumstances, SCIEX recommends using the ExionLC 2.0+ system coupled to the ZenoTOF 7600 system, SCIEX OS software and maintenance with SCIEX service and support.
The ZenoTOF 7600 system features the Zeno trap for enhanced sensitivity and electron activated dissociation (EAD) as a complementary fragmentation option. EAD typically fragments the metabolite in different locations, which can provide the additional information required for clear identification of the site of metabolism from a single analytical technique.
The workflow described in the technical note Confident characterization and identification of glucuronide metabolites using diagnostic fragments from electron activated dissociation (EAD) is a useful example of this solution.
Learn more For more information on the options SCIEX offers for metID, please speak to your account manager or visit our web page on comprehensive metID.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.
Posted by
You must be logged in to post a comment.
Share this post with your network