GEN-MKT-18-7897-A
Sep 6, 2023 | Blogs, Ion sources, Pharma, QTRAP / Triple Quad | 0 comments
Read Time: 4 minutes
N-nitrosamine analysis has raised significant concerns in the pharmaceutical industry since 2018, when these potential carcinogens were found in several angiotensin II receptor blockers (sartans). Subsequent discoveries in ranitidine and some slow-release metformin medications prompted widespread product recalls. The industry has implemented stricter manufacturing requirements and intensified efforts to evaluate and control N-nitrosamine contamination. To meet stringent regulatory requirements, it is essential to develop effective chromatography and mass spectrometry (MS) methods for N-nitrosamine analysis. This blog addresses the challenges associated with detecting N-nitrosodimethylamine (NDMA) in metformin drug products.
Analytical requirements for N-nitrosamine assays
A comprehensive N-nitrosamine assay involves 3 main components: sample preparation, chromatographic separation and MS measurement. Sample preparation aims to solubilize the target analyte, ensuring suitability for high-performance liquid chromatography (HPLC) analysis. However, the volatile and small molecular size of nitrosamines, particularly NDMA, require careful handling to prevent recovery issues. Chromatography plays a crucial role in separating the analyte from the active pharmaceutical ingredient (API) and achieving reliable peak shapes for accurate quantitation. MS is used for detection and quantitation, requiring sensitivity and selectivity to analyze low levels of nitrosamines in complex matrices.
Challenges in chromatography and MS techniques
Analyzing NDMA in metformin poses specific challenges due to the small size and high polarity of both the drug and the contaminant. Additionally, extended-release formulations present difficulties during sample preparation, often resulting in unsuitable sample matrices for analysis that uses liquid chromatography combined with mass spectrometry (LC-MS). A study involving 9 metformin lots aimed to overcome these challenges.
Addressing the challenges: analysis of NDMA in metformin
This study followed a published US Food and Drug Administration (FDA) method for metformin sample preparation that involves crushing tablets to a powder and dissolving them in pure methanol. Vortex mixing and sonication enable complete exposure of the sample to the solvent. The samples were clarified through centrifugation and the supernatant was extracted to ensure suitability for analysis.
To select the appropriate chromatography column for NDMA analysis, various stationary phases were compared using NDMA diluted in metformin. The chosen column for subsequent analysis was the Luna Omega PS C18 column from Phenomenex, which demonstrated clear separation and acceptable peak shape for quantitation. Incorporating a divert valve enabled selective collection of analyte peaks for MS analysis, preventing contamination of the mass spectrometer with the API and other formulation materials.
The study utilized the QTRAP 6500+ system from SCIEX, including a SelexION device for performing differential mobility separation (DMS). The addition of the SelexION device enhanced selectivity and specificity by separating ions orthogonally before tandem MS analysis. An atmospheric pressure chemical ionization (APCI) step was also used for precise quantitation and identification. The calibration using methanol samples and spiked samples allowed accurate quantitation of NDMA in metformin. The method achieved good reproducibility, linearity and sensitivity, with an improved signal-to-noise ratio and a lower limit of quantitation (LLOQ) of 2.
Analyzing similar contamination issues in the future
By combining these strategies and continually refining analytical methodologies, researchers are working towards a reliable and robust method for future similar drugs and contamination issues. To learn more, visit our website
Resources
https://link.springer.com/article/10.1208/s12248-020-00473-w
https://www.phenomenex.com/ViewDocument/?id=lc-mrm-ms%20method%20for%20the%20detection%20and%20quantification%20of%20six%20nitrosamine%20impurities%20in%20sartan%20%28arbs%29%20drugs
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network