GEN-MKT-18-7897-A
May 8, 2020 | Blogs, Development, Pharma, QA/QC | 0 comments
In my previous blog, I spoke about the FDA recall of angiotensin II receptor blockers like losartan. This recall was due to the presence of genotoxic nitrosamines.
Is a proactive approach the way to mitigate risk?
Recently, the FDA has re-issued the 2018 guidance to industry, “M7(R1) assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk”. Is this going to help? Or should we have a higher focus of qualitative analysis up front?
Companies need to take a look all facets of their supply chain and manufacturing process. They should be able to ensure they can control the active pharmaceutical ingredients (APIs) throughout the process, whether they do it in their own facility or it is outsourced.
How are they going to do this?
Why you need a control strategy
A control strategy is a planned set of controls derived from current product and process understanding that assures process performance and product quality (ICH Q10, Ref. 8).
A control strategy can include, but is not limited to, the following:
How to ensuring better data, by seeing it all
Work previously presented by Prof. Sörgel, at the Institute for Biomedical and Pharmaceutical Research, Nuremberg, Germany on the benefits of this workflow is that with SWATH® Acquisition you are creating a digital record of all the analytes in the sample.
This approach shows:
Watch out for our next blog where we examine some of the analytical challenges of these molecules.You can learn more about how LC-MS/MS solutions can identify, quantify and monitor the required levels of nitrosamine impurities by accessing technical notes and a webinar addressing the characterization and quantification of the genotoxic impurities.
Learn More >
This is part two of an ongoing blog series on genotoxic analysis. Read part one: “What have we learned from the nitrosamine crisis?” and part three: “Developing a method for nitrosamine analysis in pharmaceutical products“.
RUO-MKT-18-11383-A
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
In today’s rapidly evolving food industry, the role of food testing laboratories has never been more critical. Ensuring the safety, quality, and authenticity of food products is paramount, and this responsibility falls heavily on the shoulders of laboratory managers. The economics of food testing—encompassing everything from high-throughput pesticide screening to advanced research on alternative protein sources—plays a pivotal role in shaping the operational efficiency and financial health of these laboratories.
Imagine having a tech expert at your fingertips to solve computer issues or a fitness trainer guiding you through workouts from the comfort of your home. In today’s fast-paced world, the ability to provide and receive service and support remotely is no longer a luxury but a necessity. Whether it’s troubleshooting a software issue, repairing a device, offering customer assistance, or enjoying the convenience of telehealth as a private individual, remote capabilities have revolutionized how businesses operate and how individuals get help
Posted by
You must be logged in to post a comment.
Share this post with your network