The Echo® MS system: Is it reproducible? Yes… yes… yes!

Nov 13, 2020 | Biopharma, Blogs, Echo MS, Pharma | 0 comments

The Echo® MS system is an exciting new platform that dramatically speeds sample analysis for quantitative MS studies. Because of its unique and innovative technology, the system can analyze samples faster than ever before – but without the need for liquid chromatography (LC).

With traditional LC-MS, the column provides a means for sample concentration, clean-up, and separation. Chromatographic conditions are carefully optimized for the fastest elution times while still maintaining good quantitative results.

With the Echo® MS system, an Acoustic Ejection Mass Spectrometry (AEMS) is used to deliver samples to the electrospray source of a mass spectrometer. This process is fast – VERY fast, with speeds of at least 1 sample per second. But without LC, can good analytical performance be achieved? And would performance degrade with very complex or “dirty” samples?

To evaluate the reproducibility of the Echo® MS system, researchers at SCIEX analyzed 100 nM dextromethorphan in 10% methanol in water in every well of a 384 well plate. As shown in the technical note Rapid MS/MS analysis with Acoustic Ejection Mass Spectrometry (AEMS), MRM peak areas of 1.98% were achieved across all 384 wells. Additionally, all 384 wells were acquired in just under 7 minutes – barely enough time for a coffee break!

 

What about different amounts of sample? In the same study a “droplet ladder” of 1 to 20 droplets was generated from one of the dextromethorphan sample wells with 10 replicates for each. The ability to specify the number of droplets is analogous to an injection volume in standard LC work. Here the %CV obtained for the 10 replicates across the droplet ladder was <3% with excellent linearity and R2 of 0.9997.

Sounds great so far, but what about dirtier samples or challenging matrices? With traditional LC-MS, the column effectively cleans up the sample prior to elution. What happens with the Echo MS System?

In the technical note True high throughput bioanalysis using the Echo® MS System, 3 different sample preparation methods were used to see how a complex matrix would affect the quality of the data. Here, concentration curves for fentanyl were generated from protein precipitated plasma, 1:1 plasma in water and untreated plasma. Incredibly, the best performance was observed for the samples in the untreated plasma.

Better results directly from plasma? How can that be?!

The reason lies in the dilution effects that are created at the interface between the AE and the mass spectrometer, known as the open port interfact (OPI). When the droplet from the AE enters the OPI, solvent sweeps the droplet to the mass spectrometer. This built-in “dilute-and-shoot” process minimizes matrix suppression effects that would normally result from injecting straight plasma into the MS. The result is higher ionization efficiency for analytes and excellent sensitivity, without any sample preparation.

As a further test of the ability to measure analytes directly from complex matrices, angiotensin was analyzed directly from a yeast fermentation broth at 25, 30 and 50 mg/L at dilutions of 1x, 10x, and 100x. As demonstrated in the technical note Rapid quantitative analysis of fermentation broth samples to assess efficiency of engineered yeast strain turnover, very high reproducibility with consistent and precise quantification was observed across all dilutions, even for the least dilute sample. Even with such a complex matrix, virtually no sample preparation was required. In the field of synthetic biology, where strain selection can be time-consuming and tedious, minimal sample prep and faster screening mean faster strain selection and an end to a costly bottleneck in the workflow.

To learn more about this truly game-changing innovation that lets you optimize throughput with incredible performance, visit the Echo® MS System website for more information. 

Run so fast, all they hear is your echo. You’ll be glad you did … you’ll be glad you did … you’ll be glad you did.

RUO-MKT-18-12284-A
Echo® and Echo® MS are trademarks or registered trademarks of Labcyte Inc. in the United States and other countries, being used under license by SCIEX.

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

Neil Walsh is the Senior Manager for Pharma global strategic marketing at SCIEX. In this role, he manages both the strategic market and marketing for the pharmaceutical industry. Neil has spent all his working life entrenched in the pharmaceutical industry from active research, sales and business development through to strategic marketing. Outside of work Neil enjoys rugby, cycling and spending time with his family

Tags


0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial