Short-chain PFAS compounds are on the rise- Craig’s PFAS Vodcast Cora Young

Oct 14, 2021 | Blogs, Environmental / Industrial | 0 comments

Read time: 2 minutes

Short-chain per- and polyfluoroalkyl substances (PFAS) are increasing in the Canadian Arctic environment, with the most rapid increases occurring post-2000, according to a recent study in Geophysical Research Letters (April 2020). For example, trifluoracetic acid (TFA) in the Devon Ice Cap increased ~10-fold from 1.4 μg/m2 per year during 1977–1989 to 10.3 μg/m2 per year during 2001–2014. The authors of the study suggest that the increased short-chain PFAS concentrations post-2000 were from new chlorofluorocarbon (CFC) replacement chemicals produced as a result of the 1987 Montreal Protocol treaty. One of the paper’s lead authors, Professor Cora Young of York University in Toronto, Ontario, discussed the study findings during the inaugural episode of my new video podcast, “PFAS fireside chats with Craig Butt.

PFAS are well-known environmental contaminants, and they are widely detected in surface and drinking water and in humans and wildlife. PFAS have many uses in commercial products due to their properties, such as stain repellency, and they are also used in firefighting foams to combat petroleum fires. The most widely known PFAS chemicals are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which have 8 carbons. The chemicals examined in the study by Young et al. are similar to PFOA, but they have 2–4 carbons and are therefore known as short-chain PFAS. Chemicals from the fluoropolymer industry are typically attributed to long-chain PFAS, such as PFOA, that are found in remote environments. While these chemicals could explain the ice core concentrations of trifluoroacetic acid (TFA), which is 2 carbons, and perfluoropropanoic acid (PFPrA), which is 3 carbons, the study instead attributes their source to the degradation of CFC replacement chemicals, such as hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). These CFC replacements were manufactured to respond to the Montreal Protocol to combat ozone hole depletion. Therefore, international efforts to solve an environmental crisis may have unintentionally caused the global contamination of short-chain PFAS. While the study examined PFAS levels in the Canadian Arctic environment, Young believes that short-short-chain PFAS levels will be higher in more populated regions. However, due to their analytical difficulty, few labs are currently monitoring these “shorties,” which represents a major data gap. Also, while the human health implications are currently unknown, recent studies suggest that TFA may be more abundant in humans than previously thought.

Click here to read Prof. Cora and team’s full study.

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

Craig has worked in the mass spectrometry industry for over 20 years and has been with SCIEX since 2016. As a senior product application specialist, he works with customers to understand their targeted screening workflows and provide solutions using high-resolution accurate mass spectrometry technologies.

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial