GEN-MKT-18-7897-A
Feb 12, 2025 | Blogs, Discovery, Echo MS, Pharma, QA/QC | 0 comments
Read time: 2 minutes
On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.
To achieve this drug discovery assays require speed and accuracy, but often scientists must compromise on one of these requirements to cope with the thousands of samples that need to be analyzed.
The Echo® MS+ system allows pharmaceutical companies to make data-driven decisions early in the drug discovery process, saving time and money, and potentially getting their drug to market faster than with more traditional approaches. Common analytical techniques such as LC-MS or fluorescence are limited by either sample throughput or accuracy of results.
Learn more >
The Echo® MS+ system uses acoustic ejection mass spectrometry (AEMS) technology. Samples are placed into a compatible well plate which is held in the Echo® MS+ system’s autosampler. Here sound energy is applied to the bottom of each well individually. The sound energy causes reproducible droplets to be ejected from the well for capture in a carrier solvent of the OPI for dilution and transfer to the mass spectrometer’s source. From this point, the diluted sample is ionized using conventional electrospray ionization, ready for detection.
Watch video >
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.
Posted by
You must be logged in to post a comment.
Share this post with your network