https://sciex.com/content/SCIEX/na/us/en


PFAS testing: solid phase extraction vs. direct injection methods

Dec 14, 2021 | Blogs, Environmental / Industrial, Food and Beverage | 0 comments

US Environmental Protection Agency (EPA) and Department of Defense (DoD) methods for testing per- and polyfluoroalkyl substances (PFAS) in drinking water require using solid phase extraction (SPE). SPE has been used extensively in environmental contaminant analysis both for concentrating large sample volumes (improving method sensitivity) and removing matrix interferences (sample cleanup).

Although SPE is a highly selective method for sample cleanup, there are some instances where testing laboratories might prefer to use direct injection, also known as large volume injection. Direct injection can be a much quicker and simpler option for high-throughput applications such as testing drinking water. Direct injection methods benefit from minimal sample preparation and decreased risk of lab-based PFAS contamination.

Both sample preparation methods are useful as the need for rapid and robust PFAS testing increases. So which method is right for your application? Here, we look at the pros and cons of using SPE vs. using large volume injection.

Using SPE
Using SPE for testing drinking water ensures that your methods meet EPA and DoD requirements. SPE is also required by some US states. This makes SPE a great option when testing for any governmental requirements. SPE is also a well-proven method that delivers robust results for large sample volumes, and SPE cartridges are widely available commercially.

There are some downsides to using SPE, however. SPE requires longer sample preparation times than direct injection, and it requires additional training for sample prep technicians to ensure that samples are not contaminated. SPE can also add some quantitative method variability. This can be largely mitigated by the use of internal standards, but LOQs for PFAS analysis are often limited not by the analytical LC-MS/MS method, but by the variability and background contamination introduced by performing SPE. This can limit the usefulness of SPE.

Using direct injection/large volume injection
Direct injection is less time consuming than SPE and requires less sample preparation, which decreases the risk of lab-based contamination. Direct injection also requires no extraction. This method is suitable for cleaner samples, such as drinking water and some surface and ground waters, and it allows testing laboratories to provide more high-throughput offerings to clients and therefore more environmental testing options.

There are also some cons to using direct injection. It is not allowed in many regulated methods, which limits its application, and it has not been evaluated by the EPA. In addition, dirtier, more complex sample matrices can result in LC system and column clogging or high matrix effects.

When to use which
The method best suited to your application will depend on your unique situation and the needs of your lab. Learn more from our experts about the benefits of using direct injection or SPE methods for PFAS testing to help you make the right choice.

Questions and answers to help improve your mycotoxin analysis

During a recent webinar I shared method details for mycotoxin analysis on the SCIEX 7500 system. In this blog i will share the Q&A for the submitted questions that we did not have chance to answer during the live webinar.

A 2-fold revolution: MS approaches for the bioanalysis of oligonucleotide therapeutics

In 1998, the US Food and Drug Administration (FDA) approved fomivirsen as the first therapeutic oligonucleotide therapeutic. This approval marked a revolution of mechanism of action discovered decades before finally coming to fruition. Since then, the landscape of chemical modifications of oligonucleotides, conjugations and formulations has evolved tremendously, contributing to improvements in stability, efficacy and safety. Today, more than a dozen antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) drugs are on the market, most of which are designated as orphan drugs for treating rare genetic diseases.

Is “right first time, every time” a pipedream for metabolite identification by LC-MS?

If we lived in an ideal world, it would be possible to unambiguously identify metabolites using a single analytical experiment. This analytical technique would need to be efficient and easily generate the information needed from a routine assay that is also robust, enabling confident decision-making during drug discovery.

Posted by

Craig has worked in the mass spectrometry industry for over 20 years and has been with SCIEX since 2016. As a senior product application specialist, he works with customers to understand their targeted screening workflows and provide solutions using high-resolution accurate mass spectrometry technologies.

Tags


0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial