GEN-MKT-18-7897-A
Nov 13, 2020 | Biopharma, Blogs, Echo® MS+ system, Pharma | 0 comments
The Echo® MS system is an exciting new platform that dramatically speeds sample analysis for quantitative MS studies. Because of its unique and innovative technology, the system can analyze samples faster than ever before – but without the need for liquid chromatography (LC).
With traditional LC-MS, the column provides a means for sample concentration, clean-up, and separation. Chromatographic conditions are carefully optimized for the fastest elution times while still maintaining good quantitative results.
With the Echo® MS system, an Acoustic Ejection Mass Spectrometry (AEMS) is used to deliver samples to the electrospray source of a mass spectrometer. This process is fast – VERY fast, with speeds of at least 1 sample per second. But without LC, can good analytical performance be achieved? And would performance degrade with very complex or “dirty” samples?
To evaluate the reproducibility of the Echo® MS system, researchers at SCIEX analyzed 100 nM dextromethorphan in 10% methanol in water in every well of a 384 well plate. As shown in the technical note Rapid MS/MS analysis with Acoustic Ejection Mass Spectrometry (AEMS), MRM peak areas of 1.98% were achieved across all 384 wells. Additionally, all 384 wells were acquired in just under 7 minutes – barely enough time for a coffee break!
What about different amounts of sample? In the same study a “droplet ladder” of 1 to 20 droplets was generated from one of the dextromethorphan sample wells with 10 replicates for each. The ability to specify the number of droplets is analogous to an injection volume in standard LC work. Here the %CV obtained for the 10 replicates across the droplet ladder was <3% with excellent linearity and R2 of 0.9997.
Sounds great so far, but what about dirtier samples or challenging matrices? With traditional LC-MS, the column effectively cleans up the sample prior to elution. What happens with the Echo MS System?
In the technical note True high throughput bioanalysis using the Echo® MS System, 3 different sample preparation methods were used to see how a complex matrix would affect the quality of the data. Here, concentration curves for fentanyl were generated from protein precipitated plasma, 1:1 plasma in water and untreated plasma. Incredibly, the best performance was observed for the samples in the untreated plasma.
Better results directly from plasma? How can that be?!
The reason lies in the dilution effects that are created at the interface between the AE and the mass spectrometer, known as the open port interfact (OPI). When the droplet from the AE enters the OPI, solvent sweeps the droplet to the mass spectrometer. This built-in “dilute-and-shoot” process minimizes matrix suppression effects that would normally result from injecting straight plasma into the MS. The result is higher ionization efficiency for analytes and excellent sensitivity, without any sample preparation.
As a further test of the ability to measure analytes directly from complex matrices, angiotensin was analyzed directly from a yeast fermentation broth at 25, 30 and 50 mg/L at dilutions of 1x, 10x, and 100x. As demonstrated in the technical note Rapid quantitative analysis of fermentation broth samples to assess efficiency of engineered yeast strain turnover, very high reproducibility with consistent and precise quantification was observed across all dilutions, even for the least dilute sample. Even with such a complex matrix, virtually no sample preparation was required. In the field of synthetic biology, where strain selection can be time-consuming and tedious, minimal sample prep and faster screening mean faster strain selection and an end to a costly bottleneck in the workflow.
To learn more about this truly game-changing innovation that lets you optimize throughput with incredible performance, visit the Echo® MS System website for more information.
Run so fast, all they hear is your echo. You’ll be glad you did … you’ll be glad you did … you’ll be glad you did.
RUO-MKT-18-12284-AEcho® and Echo® MS are trademarks or registered trademarks of Labcyte Inc. in the United States and other countries, being used under license by SCIEX.
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network