GEN-MKT-18-7897-A
Feb 16, 2017 | Blogs, Forensic | 0 comments
While most analytes in forensic applications analyze well with positive ionization, there are analytes that show better ionization efficiency with negative ionization, for example, acidic compounds. These analytes include ethanol metabolites such as ethyl glucuronide (ETG), ethyl sulfate (ETS), and the barbiturates such as amobarbital, butabarbital, butalbital, pentobarbital, phenobarbital, and secobarbital.
In this technical note, researchers demonstrated a method to simultaneously analyze ethanol metabolites and barbiturates in human urine using QTRAP®/Triple Quad 4500 LC-MS/MS system. Sample preparation is based on a simple “dilute and shoot” methodology. The method has a total runtime of 5 minutes, shows good sensitivity and is very robust. More than 800 continuous injections of human urine samples were performed on a single LC column with no deterioration in performance evident.
How does this test play out in real-world scenarios? ETG and ETS are biomarkers for determining the presence of alcohol over the past 80 hours where ETG is the direct metabolite of alcohol. ETG is only detected if alcohol has been consumed. What is more is that urine tests are the most common and inexpensive choice when testing for drug use and can be easily captured. Making sure results stand up in court, but also being able to run simultaneous drug screenings will help your lab keep up with sample workloads while also producing reliable results.
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network