GEN-MKT-18-7897-A
Aug 1, 2019 | Blogs, Forensic | 0 comments
Elevate Performance in Your Forensic Toxicology LabYou only need to skim through the United Nations World Drug Report 2018 to see that drug abuse is escalating. Associated with numerous medical, social, and legal problems, it comes as no surprise that ‘drugs of abuse’ testing is an increasingly important task in forensic toxicology. Identifying drugs in biological samples provides scientific evidence in court. With this in mind, the forecasted 9.6% CAGR in the global drug of abuse testing market during 2017-2023 is not only inevitable, but further reinforces the crisis.
If you work in a forensic toxicology lab, you don’t need to read these statistics to know that the pressure is on. New designer drugs are emerging on the market on a monthly basis and the number of case samples to process keeps ramping up. This presents a new challenge as forensic toxicology laboratories are experiencing severe backlogs, putting a burden on the ability to quickly screen new samples. What you need is a sensitive and comprehensive analytical system for comprehensive screening of biological samples, so you can quickly complete your case investigation after receiving a sample.
Enhance Performance with Powerful, Highly Sensitive InstrumentsAs a first-line screening method, immunoassays are most commonly used to detect abused drugs in biological samples. Although it is a fast, convenient and relatively inexpensive method for basic screening, its potential remains limited due to insufficient specificity and coverage. Gas chromatography-mass spectrometry (GC-MS) has long been the technique of choice for illicit drug analysis in forensic toxicology. While GC-MS offers high sensitivity and good separation power, it requires extensive sample preparation with sample derivatization and lengthy analysis methods. This introduces long run times and results in a mounting case backlog.
In recent years, we have seen GC-MS become overshadowed by the rapid turnaround time, ease of use and high sensitivity of an alternative technique. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) offers significant performance benefits to forensic investigators. It has become the method of choice for quantitative analysis of abused drugs because it offers several advantages over GC-MS, such as faster sample extraction and simultaneous analysis of a broader range of compounds.
Sounds Great, But Can We Prove It?We certainly can, and we invite you to read the technical paper entitled Elevating the Forensic Laboratory Performance – Application of the SCIEX Triple Quad™ 3500 LM-MS/MS System for Rapid Analysis of Drugs of Abuse in our recently published Forensics Compendium.
You will see how we have developed a method for rapid, reliable and comprehensive analysis of forensic drugs in urine samples. You will see how the use of a polarity switching method due to the inclusion of several barbiturates, and an optimized Scheduled MRM™ algorithm allows detection of over 200 forensic compounds. You will also see how a runtime of approximately 6.5 minutes was achieved to accommodate detection of all the drugs of abuse in the same, and how the runtime can be reduced to 5 minutes with a smaller targeted list (<60 analytes).
The results highlight much faster sample analysis when compared to a 15-17 minute GS-MS workflow. With the ability to process more than 285 samples within a 24-hour timeframe using a 5 minute LC run time, you can see why the forensic laboratory is quickly turning to LC-MS/MS to significantly increase turnaround time and reduce large case backlogs.
With the prospect of more efficient workflows and shorter run times, download the Forensics Compendium to read the tech note today and find out how your lab can improve performance with a fully-developed and proven LC-MS/MS method.
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network