Drugs of Abuse Analysis: How LC-MS/MS Reduced Run Times by 66% and Tripled Throughput

Aug 1, 2019 | Blogs, Forensic | 0 comments

Elevate Performance in Your Forensic Toxicology Lab
You only need to skim through the United Nations World Drug Report 2018 to see that drug abuse is escalating. Associated with numerous medical, social, and legal problems, it comes as no surprise that ‘drugs of abuse’ testing is an increasingly important task in forensic toxicology. Identifying drugs in biological samples provides scientific evidence in court. With this in mind, the forecasted 9.6% CAGR in the global drug of abuse testing market during 2017-2023 is not only inevitable, but further reinforces the crisis.

If you work in a forensic toxicology lab, you don’t need to read these statistics to know that the pressure is on. New designer drugs are emerging on the market on a monthly basis and the number of case samples to process keeps ramping up. This presents a new challenge as forensic toxicology laboratories are experiencing severe backlogs, putting a burden on the ability to quickly screen new samples.  What you need is a sensitive and comprehensive analytical system for comprehensive screening of biological samples, so you can quickly complete your case investigation after receiving a sample.

Enhance Performance with Powerful, Highly Sensitive Instruments
As a first-line screening method, immunoassays are most commonly used to detect abused drugs in biological samples. Although it is a fast, convenient and relatively inexpensive method for basic screening, its potential remains limited due to insufficient specificity and coverage. Gas chromatography-mass spectrometry (GC-MS) has long been the technique of choice for illicit drug analysis in forensic toxicology. While GC-MS offers high sensitivity and good separation power, it requires extensive sample preparation with sample derivatization and lengthy analysis methods. This introduces long run times and results in a mounting case backlog.

In recent years, we have seen GC-MS become overshadowed by the rapid turnaround time, ease of use and high sensitivity of an alternative technique. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) offers significant performance benefits to forensic investigators. It has become the method of choice for quantitative analysis of abused drugs because it offers several advantages over GC-MS, such as faster sample extraction and simultaneous analysis of a broader range of compounds.

Sounds Great, But Can We Prove It?
We certainly can, and we invite you to read the technical paper entitled Elevating the Forensic Laboratory Performance – Application of the SCIEX Triple Quad™ 3500 LM-MS/MS System for Rapid Analysis of Drugs of Abuse in our recently published Forensics Compendium.

You will see how we have developed a method for rapid, reliable and comprehensive analysis of forensic drugs in urine samples. You will see how the use of a polarity switching method due to the inclusion of several barbiturates, and an optimized Scheduled MRM™ algorithm allows detection of over 200 forensic compounds. You will also see how a runtime of approximately 6.5 minutes was achieved to accommodate detection of all the drugs of abuse in the same, and how the runtime can be reduced to 5 minutes with a smaller targeted list (<60 analytes).

The results highlight much faster sample analysis when compared to a 15-17 minute GS-MS workflow. With the ability to process more than 285 samples within a 24-hour timeframe using a 5 minute LC run time, you can see why the forensic laboratory is quickly turning to LC-MS/MS to significantly increase turnaround time and reduce large case backlogs.

With the prospect of more efficient workflows and shorter run times, download the Forensics Compendium to read the tech note today and find out how your lab can improve performance with a fully-developed and proven LC-MS/MS method.

Overcoming uncertainty in your PFAS analysis

Just like gum on the bottom of a shoe, the existence of per- and poly-fluorinated alkyl substances (PFAS) in our environment is a sticky one. If you’re in the field of environmental testing, then you’re all too familiar with the threat these substances have on public health. While we have learned a lot about them over the years, there is still much more to understand. With the right detection methods, we can gather the information we need to empower us to make informed decisions on reducing the risks they impose.

6 Signs it’s time for a new vendor

A lab’s success depends on many factors from instrument quality to efficient operations, including being partnered with the right vendor. A vendor is more than just a supplier. They should provide you with a high-level quality of support in maximizing the lifespan and performance of your systems, reducing downtime, enhancing ROI and more. How do you know if you’re partnered with the right one? Here are six signs it might be time to find someone new.

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial