GEN-MKT-18-7897-A
Jan 29, 2023 | Biopharma, Blogs, Echo MS, Pharma | 1 comment
You asked, we answered! With analysis speeds of at least 1 sample per second, the Echo® MS system has created a buzz in the industry. This is up to 50x faster than conventional LC-MS/MS. This revolutionary tool for drug discovery and development has led to many questions from scientists and researchers around the world. We answer the top 7 Echo® MS system questions here.
The sample ejection volume for the Echo® MS system is about 0.1% of what you are injecting into an LC-MS system. Therefore, you are putting many fewer contaminants into the system over the same period of time.
The SCIEX OS software controls the system. This allows us to automatically process the data and export the results to any visualization software or LIMS. The SCIEX OS API (Application Programming Interface) allows integration with automation software from robotics vendors.
What types of liquid handling systems can be interfaced upstream of the Echo MS system? And what plate/sample throughput rates are possible?
The system is compatible with any vendor’s robotics system that can manage 384- and 1536-well plates. The cycle time for 384-well plates is less than 10 minutes, and for 1536-well plates it is less than 30 minutes.
The total size of the system is approximately 1.3 meters x 1.4 meters. This does not include the acquisition computer (which can be located up to 2 meters from the system) or the 1 meter of service access required around the entire system.
For a 384-well plate, the minimum volume required in the well is 20 µL and for 1536-well plates the minimum volume required is 3 µL. This is to ensure efficient ejection of the sample droplet.
Do you have a question? Please submit your question today or add it below in the comments.
Learn more about what the Echo® MS system can do for your lab at sciex.com/echoms. You will be able to see inside the system, download the brochure, gain access to technical notes, watch the video and request a quote.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
In today’s rapidly evolving food industry, the role of food testing laboratories has never been more critical. Ensuring the safety, quality, and authenticity of food products is paramount, and this responsibility falls heavily on the shoulders of laboratory managers. The economics of food testing—encompassing everything from high-throughput pesticide screening to advanced research on alternative protein sources—plays a pivotal role in shaping the operational efficiency and financial health of these laboratories.
Imagine having a tech expert at your fingertips to solve computer issues or a fitness trainer guiding you through workouts from the comfort of your home. In today’s fast-paced world, the ability to provide and receive service and support remotely is no longer a luxury but a necessity. Whether it’s troubleshooting a software issue, repairing a device, offering customer assistance, or enjoying the convenience of telehealth as a private individual, remote capabilities have revolutionized how businesses operate and how individuals get help
Posted by
nice
You must be logged in to post a comment.
Share this post with your network