GEN-MKT-18-7897-A
Jan 24, 2025 | Biopharma, BioPhase 8800 system, Blogs, PA 800 system | 0 comments
Read time: 2 minutes
Peter Holper, Staff Applications Scientist at SCIEX, US, shares his tips and tricks on AAV analysis using CE with the BioPhase 8800 system and the PA 800 Plus system.
Tip 1: Leverage the flexibility in injection modes
When starting out with a new viral vector product, my recommendation is to compare three different modes of injection using UV detection. First, start with a standard electrokinetic injection, which allows for the highest theoretical resolution. Next, use a pressure/ hydrodynamic injection, which will inject the same plug regardless of sample ionic strength and provide a quick estimate of the titer. Finally, use a field-amplified sample stacking (FASS) injection to achieve the highest sensitivity, while understanding it is the most sensitive injection method to the ionic strength of the matrix. Comparing these three peak profiles can give significant insight into the optimal separation conditions for each molecule analyzed.
Tip 2: Deal with low sample amounts
During early-stage development of AAV vectors, oftentimes only a few micrograms of proteins or less are available for analytics. However, most analytical technology is not practical for applications with low protein concentration or small sample volumes. To improve the sensitivity of CE-SDS, my recommendation is to use laser-induced fluorescence (LIF) detection instead of UV absorbance. Comparing the results from the different injection types (tip 1) will help you determine if additional sensitivity and transition to LIF detection is needed.
Tip 3: Optimize fluorescence dye labelling
Labeling procedure can pose challenges and require optimization for each product. Currently, the most common fluorescent dye used in CE-SDS-LIF is Chromeo P503, which has a low quantum yield when not bound to a protein and thus does not require additional cleanup after conjugation. When optimizing the labeling procedure with Chromeo P503, I find the dye-to-protein ratio to be the most important factor. If this ratio is not optimal, low signal or high peak tailing is often observed. I find that estimating the protein titer by referring to the peak area achieved with pressure injection (tip 1) can be highly beneficial, since only the genome titer may be known at this point.
In a recent webinar, which is now available on-demand, Holly Lee powerful strategies to tackle complex residue testing. From boosting throughput to fine-tuning method sensitivity, Holly shared key ways to maximize performance across large pesticide panels.
Whether we are raising glasses of rosé in a vineyard in France or enjoying a lager in a casual street restaurant in China, it is likely that the last thing on many people’s minds is the chemical risks from their beverage. Unless you work in food science, then it might actually be the first thing.
As PFAS regulations tighten globally, laboratory managers are navigating a complex economic landscape. Whether operating in a commercial or non- commercial setting, the pressure to deliver accurate, defensible, and timely PFAS data is mounting. At SCIEX we understand that the right technology can turn this regulatory challenge into a strategic opportunity.
Posted by
You must be logged in to post a comment.
Share this post with your network