GEN-MKT-18-7897-A
Aug 20, 2015 | Blogs, Life Science Research, Proteomics | 0 comments
A recent study by Katy Williams (UCSF), Christie Hunter (SCIEX), and Andrew Olsen (Advaita) used the iPathwayGuide within the OneOmics cloud computing environment to help understand how placental development can go awry during certain pregnancy complications such as pre-eclampsia.
In this pilot study, the researchers studied cytotrophoblast differentiation. Cytotrophoblasts are the cells that are mainly responsible for establishing an anchor between the developing embryo and placenta with the uterine wall. The researchers compared cytotrophoblasts from the primary culture at both 2nd trimester and full term. SWATH proteomics data acquired using a SCIEX TripleTOF® 6600 System were analyzed in OneOmics using iPathwayGuide to identify differentially regulated proteins and their associated pathways, biological processes, and molecular functions. The proteomics data were then compared with RNASeq transcriptomics data acquired using an Illumina HiSeq System. Both the proteomics data and transcriptomics data were correlated using the OneOmics Platform and iPathwayGuide in the cloud. This meta-analysis allowed the researchers to discover common pathways and processes between the data sets as well as those only observed in the proteomic or transcriptomic datasets alone.
The pilot study helped to illuminate the biological significance of multiple proteins and pathways and provided an effective pipeline for taking raw data to biological answers.
See the complete study by viewing a 10 minute mini webinar. If you’d like to get a demo of the OneOmics Project, just comment below and we’ll be in touch.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network