GEN-MKT-18-7897-A
Aug 30, 2015 | Blogs, Food / Beverage | 0 comments
Smart food shopping starts with labels. However, what if we told you the ingredient list may not be all that it seems? According to Food Safety News, producers are sneaking lower quality ingredients into our food to save money. This type of food fraud is estimated to cost the global food industry $10 to $15 billion per year. If you think back to the Middle Ages, even our ancestors were consumed with cost savings by inserting nutshells, seeds, berries, and more within their spices.
To read the complete Food Quality report on the SCIEX LC-MS/MS solution, click here.
Safety and Ethical Problems Exist within our Food Supply. However, we no longer live in the Middle Ages, and healthy nutrients such as honey, olive oil, milk, spices, fruit juices, meats, grains, and even organic food are most likely to be plagued by false ingredients. Search the Internet and you can find a substantial list of what might be substituted for the real thing. This can be a huge problem, not only due to possible harmful side effects for consumers, but also due to ethical and religious concerns around food origin. In the Islamic community, for example, it is the law to monitor food, consumer products or other objects for permissibility. A very specific example is the testing of meat products for the presence of pork, which is forbidden in Halal-classified food products.
Move Over ELISA and PCR, Here Comes a Better Way to Test for Meat Authenticity: To address these growth safety and ethical concerns around food, and specifically meat, authenticity, a new meat species authentication method developed for Halal food verification using the QTRAP 6500 LC-MS/MS has recently been developed. Thanks to scientists at the University of Münster, multiple species were detected simultaneously while achieving the lowest levels of detection in cooked and highly processed meats. Many advantages were discovered over traditional methods such as PCR and ELISA, which are plagued with delivering false negative or false positive results, but also where sample degradation (particularly common in processed food products) can have a significant impact on the reliability of the results. The latest LC-MS/MS technology is not only sensitive enough to detect porcine contamination as low as one percent, but it is diverse enough to detect multiple species simultaneously, and utilizes multiple peptide or lipid markers from each species to help improve reliability in the results, even for processed foods. As a result, labs will feel more confident that when they report a positive result, it is indeed a positive result, and vice versa.
Committed to Progress: Meat is one of the most consumed food products in the world, and labs are increasingly finding new ways to test for authenticity and adulteration. “You are what you eat,” should remain true, and the SCIEX team is committed to helping labs get the testing done right. To view a list of reported food fraud risks, visit www.foodfraud.org. To read the complete Food Quality report on the SCIEX LC-MS/MS solution, click here.
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network