Testing Liquor for Authenticity Using LC-MS/MS Technology

Dec 18, 2015 | Blogs, Food / Beverage | 0 comments

The Proof is in Your Holiday Drink

If you think bootlegging was limited to the age of Prohibition then you have never tested liquor for authenticity using mass spectrometry. Maybe it is a scientist thing, but we simply cannot help but bring up the subject as people toast one another this holiday season.

I was surprised to hear that my favorite holiday drink (champagne) could be something other than what I thought it was. For instance, cheaper alcohol could be placed in a more expensive bottle and passed off for the real thing. Other times it may be diluted with water or artificial coloring. 

Methanol versus Ethanol
Want to know what is even worse than having your fake drink passed off for the real thing? Unlawful sellers have been known to add methanol to liquor instead of ethanol. Methanol is a chemical originally distilled from wood and mostly now by oxidizing methane. Methanol is found in many products we use, however, drinking it is not good. Highly toxic when ingested, methanol can cause severe illness and sometimes death. Ethanol, which is legitimate alcohol, is the result of fermented yeast, starch, or sugars.

How and Why is Alcohol Adulterated?
I do not want to get into a debate on the topic but rather shed light on how scientists have the ability to help the industry by testing for adulterated alcohol. From what I know about the topic, the bad guys are bootlegging alcohol for profit. They use methanol as it gives you a cheaper high. Drink too much and you might find yourself experiencing dire side effects as soon as 40 minutes after consumption that include a headache, dizziness, seizures, blindness, stomach discomfort, and even death.

Keep in mind legitimate producers want to do everything they can to preserve the authenticity of their product. Looking or smelling a bottle of alcohol alone does not provide enough evidence of artificial ingredients. Which is why in this technical note, researchers describe how LC-MS/MS was used as an analytical method with PCA data processing to prove authenticity and quality of liquors.

Is your lab testing for liquor authenticity? Share your story. 

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Unlocking precision: navigating data conversion in metabolomics

Useful FAQ document to enable researchers to focus on their scientific discoveries and insights rather than the complexities of data management.

Understanding PFAS and its impact on U.S. drinking water

In recent years, per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals,” have become a growing topic of interest due to their persistence in the environment and potential health risks. These synthetic compounds have been widely used in various industrial applications and consumer products since the 1940s. PFAS can be found in the air, soil, and water, and studies have shown that most people have detectable levels of PFAS in their bloodstream. One of the main exposure pathways for humans is through drinking water, particularly in communities located near industrial sites, military bases, or areas where firefighting foam has been used.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial