GEN-MKT-18-7897-A
Dec 18, 2015 | Blogs, Food / Beverage | 0 comments
If you think bootlegging was limited to the age of Prohibition then you have never tested liquor for authenticity using mass spectrometry. Maybe it is a scientist thing, but we simply cannot help but bring up the subject as people toast one another this holiday season.
I was surprised to hear that my favorite holiday drink (champagne) could be something other than what I thought it was. For instance, cheaper alcohol could be placed in a more expensive bottle and passed off for the real thing. Other times it may be diluted with water or artificial coloring.
Methanol versus EthanolWant to know what is even worse than having your fake drink passed off for the real thing? Unlawful sellers have been known to add methanol to liquor instead of ethanol. Methanol is a chemical originally distilled from wood and mostly now by oxidizing methane. Methanol is found in many products we use, however, drinking it is not good. Highly toxic when ingested, methanol can cause severe illness and sometimes death. Ethanol, which is legitimate alcohol, is the result of fermented yeast, starch, or sugars.
How and Why is Alcohol Adulterated?I do not want to get into a debate on the topic but rather shed light on how scientists have the ability to help the industry by testing for adulterated alcohol. From what I know about the topic, the bad guys are bootlegging alcohol for profit. They use methanol as it gives you a cheaper high. Drink too much and you might find yourself experiencing dire side effects as soon as 40 minutes after consumption that include a headache, dizziness, seizures, blindness, stomach discomfort, and even death.
Keep in mind legitimate producers want to do everything they can to preserve the authenticity of their product. Looking or smelling a bottle of alcohol alone does not provide enough evidence of artificial ingredients. Which is why in this technical note, researchers describe how LC-MS/MS was used as an analytical method with PCA data processing to prove authenticity and quality of liquors.
Is your lab testing for liquor authenticity? Share your story.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network