Taking on Precision Medicine with Industrialized Proteomics

Apr 18, 2016 | Blogs, Life Science Research, OneOmics, Proteomics | 0 comments

White House, EU, UK, and Australia Make Major Investments

What if we could deliver the right treatment at the right time, to the right person to better, more effectively treat complex diseases? This is the promise of precision medicine, to be able to approach complex disease treatment and prevention by taking into account individual variability in genes, environment, and lifestyle for each person.

Many of today’s medical treatments have been designed for the masses while the promise of precision medicine is to build treatments that are constructed around specific diseases and individual characteristics. For example, if the genetic profile of an individual’s tumor could be measured, physicians can better manage cancer treatment by using the right drug for that genetic profile, which should lead to better outcomes and reduced adverse effects.

New White House Initiative Announced – USA
During President Obama’s 2015 State of the Union address, he announced the launch of the Precision Medicine Initiative (PMI). This new research effort is slated to revolutionize how we improve health and treat disease. In December 2015, President Obama signed into law a budget agreement that earmarked $200 million specifically for the advancement of precision medicine.

Watch Jo Handelsman, Associate Director for Science in the Office of Science and Technology Policy, explains the Precision Medicine Initiative and its significance.

EU Personalized and Precision Medicine Initiatives
Numerous efforts in the EU are promoting advances in precision medicine. As an example, a European Parliament brief on personalized medicine highlights how the Luxembourg Council Presidency has made personalized medicine one of its health priorities. The Innovative Medicines Initiative (IMI), another public/private partnership, facilitates collaborations between key stakeholders and provides financial support to major research projects, to accelerate the development of new treatments. The initiative’s second phase, IMI 2, started in 2014. Its goal is to develop next-generation vaccines, medicines, and treatment, in particular, new and approved diagnostic markers for immunological, respiratory, neurological and neurodegenerative diseases. The total budget for IMI 2 is €3 276 billion.

UK Establishes The Precision Medicine Catapult
Established in April 2015, the Precision Medicine Catapult is the UK’s new national innovation center for precision medicine. Its aim is to make the UK the most attractive place in the world in which to develop precision medicine tests and therapies. It is funded by Innovate UK, the Government’s innovation agency, and has been funded with £50m in its first five years.  It will partner with precision medicine clusters across the UK to deliver a national strategy while also bringing impact to local healthcare.

Australia’s Children’s Medical Research Institute (CMRI) Works to Advance Precision Medicine
The high throughput ProCan facility will be established with $10 million in seed money from The Australian Cancer Research Foundation. Over the next five years, scientists at CMRI will analyze tens of thousands of examples of all types of cancer from all over the world to develop a library of information to advance scientific discovery and enhance clinical treatment worldwide. These studies will profile thousands of tumor samples per year, enable discoveries around the causes of cancer, provide guidance of cancer treatment options, and work to produce standard operating procedures for other facilities around the world.

The SCIEX Solution
As the promise of precision medicine continues to evolve, researchers will need powerful tools and application support to perform the Omics research that creates the scientific foundation of precision medicine. SCIEX industrialized proteomics solutions, using SWATH acquisition-based workflows and powered by the cloud with the OneOmics suite, will enable large-scale proteome studies to advance research. 

SCIEX partners with the University of Manchester to develop biomarker discovery centre and multi-omics center for Precision Medicine. Read more >

Learn How SCIEX and Children’s Medical Research Institute have joined forces to advance the promise of precision medicine. Read more > 

With SCIEX technologies, you can accelerate the pace of your research to identify key genes, proteins, lipids and metabolites in complex systems biology and then integrate your findings to gain a comprehensive insight to further understand health and disease.

Want to know more about available methods? Comment below!

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

Neil Walsh is the Senior Manager for Pharma global strategic marketing at SCIEX. In this role, he manages both the strategic market and marketing for the pharmaceutical industry. Neil has spent all his working life entrenched in the pharmaceutical industry from active research, sales and business development through to strategic marketing. Outside of work Neil enjoys rugby, cycling and spending time with his family

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial