GEN-MKT-18-7897-A
Jul 26, 2016 | Blogs, Environmental / Industrial | 0 comments
The United States Environmental Protection Agency (EPA), under the 1996 Safe Drinking Water Act (SDWA), requires a new list of no more than 30 unregulated contaminants to be monitored by public drinking water systems. Known as the Unregulated Contaminant Monitoring Rule (UCMR), a new list is published every five years. The last rule, UCMR3, was published May 2, 2012, and is the focus of the following application note, “Analysis of Perfluoroalkyl (PFFA) Acids Specified under the UCMR3 Using the QTRAP® 6500 LC-MS/MS system,” which can be found in the Food and Environmental Compendium.
OverviewUsing the guidelines laid out by EPA Method 537, “A Determination of Selected Perfluoroalkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC-MS/MS),” this application note describes the performance of the QTRAP 6500. Within the scope of EPA 537, there are 14 PFAAs. Six are specified under the UCMR3 monitoring list.
ProcessSample preparation and data processing were carried out according to EPA Method 537 without deviation unless specifically noted. The analysis was carried out using the QTRAP 6500 coupled with the Agilent 1260 HPLC with an Eksigent ULC 100 HTC-xt autosampler. Quantitation using MultiQuant ™ 3.0.
ConclusionThe lower the detection, the harder the QTRAP 6500 works for you as it easily meets the UCMR3 reporting limits. See what more it can do when you download the compendium. Download the compendium >
Depending on the samples that you are running on the system, it is possible for the Echo MS electrode to become dirty or occluded over time. Below are two different cleaning strategies that will be helpful for you to maintain your system and keep your electrodes running well.
Developing an analytical method can be one of the most rewarding jobs an analytical scientist can do, but it can also be one of the most complex and frustrating. To help guide your practical experiments and thought processes we spoke to Kean Woodmansey to benefit from his experience.
As analytical organizations grow, there is an even greater need to train scientists and operators more consistently to meet tight deadlines, handle increasing samples, and meet data quality expectations. A high rate of employee turnover also affects the productivity of labs worldwide. Consistent training helps today’s labs stay competitive, whether the goal is sample throughput, therapeutic development, or publication.
Posted by
You must be logged in to post a comment.
Share this post with your network