The Promise of Precision Medicine

Aug 26, 2016 | Blogs, Life Science Research, Proteomics | 0 comments

NIH awards $55 million to build million-person precision medicine study

Here is the latest update on the Worldwide Efforts to Accelerate Precision Medicine

The NIH recently issued a press release in early July announcing $55 million in awards. According to the release, the $55 million award in the fiscal year 2016 will go towards building the foundational partnerships and infrastructure needed to launch the Cohort Program of President Obama’s Precision Medicine Initiative (PMI). The PMI Cohort Program is a landmark longitudinal research effort that aims to engage 1 million or more U.S. participants to improve the ability to prevent and treat disease based on individual differences in lifestyle, environment, and genetics.

The press release goes on the state that the PMI Cohort Program is one of the most ambitious research projects in history and will set the foundation for new ways of engaging people in research. PMI volunteers will be asked to contribute a wide range of health, environment and lifestyle information. They will also be invited to answer questions about their health history and status, share their genomic and other biological information through simple blood and urine tests and grant access to their clinical data from electronic health records. Also, mobile health devices and apps will provide lifestyle data and environmental exposures in real time.  All of this will be accomplished with essential privacy and security safeguards.  As partners in the research, participants will have ongoing input into study design and implementation, as well as access to a wide range of their individual and aggregated study results.

The SCIEX Solution
As the promise of precision medicine continues to evolve; researchers will need powerful tools and application support to perform the Omics research at an industrialized scale that is sufficient to build the scientific foundation of precision medicine.

SCIEX has been focused on industrializing the proteomics solutions to enable large-scale proteome studies to advance research.   Centered around the microflow SWATH® acquisition strategy for collecting digital proteome maps, data processing has been moved to the cloud with the OneOmics™ project to provide the compute power for processing these maps.  Protocols also have been automated to provide the reproducibility required, again at an appropriate scale to feed the pipeline.

The same principles have been applied to industrializing quantitative lipidomics, with the launch of the Lipidyzer™ Platform.

With SCIEX technologies, you can accelerate the pace of your research to identify key genes, proteins, lipids and metabolites in complex systems biology and then integrate your findings to gain a comprehensive insight to further understand health and disease.

Want to know more about available methods? Comment below!

References

  1. NIH Press Release- NIH awards $55 million to build million-person precision medicine study

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial