GEN-MKT-18-7897-A
May 31, 2017 | Blogs, Food / Beverage | 0 comments
Adding colorful dyes to food is nothing new. In the early 19th century, for example, it wasn’t uncommon for manufacturers to add chalk to white bread, thicken milk with a lead compound, and inject red dye into meat in the quest for a fresher appearance1. Fast forward to the 21st century, however, and along with mass spectrometry, food standards have come a long way. Foods now must pass muster according to standards set by government regulators or else risk fines and punishment which can be costly for the manufacturer. To support these measures, are agencies such as the US-FDA, EFSA, and others which have banned some colors due to their toxic and carcinogenic nature which brings me to mass spectrometry analysis. Discover more when you read the following application note, “LC-MS/MS Analysis of Emerging Food Contaminants,” in which researchers used the ExionLC AD with a Phenomenex Column for sample separation followed by MS/MS detection with the SCIEX X500R QTOF system.Download the Application Note >
Traditional analytical methods used to test for the presence of banned colors and dyes in food such as TLC-UV/VIS, LC-UV/VIS, and LC-MS have limited selectivity and sensitivity and are therefore only used for targeted analysis. Recent advancements in LC-HR-MS technology, however, provide the ability to perform targeted and non-targeted screening in food samples on a routine basis. The exact mass and MS/MS data provided by these instruments contain enough information to confidently identify known food ingredients and contaminants and unknown chemicals that may also be present in the sample.
It’s not just food either that labs must be on top of, but carbonated drinks such as soda which have been known to contain 4-Methylimidazole, a byproduct of caramel coloring, and a possible carcinogenic. In a previous application note, researchers presented a method using LC-MS/MS to:
The Take Away:Today’s consumer is leaning toward a healthier diet, and some manufacturers are even choosing to eliminate or reduce the number of dyes in their products2. Now, more than ever, color additives are strictly monitored and regulated by government agencies, and it’s up to labs to routinely test samples using sensitive analysis techniques. Analyzing dyes in foods is particularly challenging because these food samples are inherently complex, and analysis of low levels of dye compounds is a challenge. LC-MS/MS is an excellent solution for this analysis because it:
1. https://www.theatlantic.com/business/archive/2017/05/american-food-coloring-dyes/525666/2. https://foodal.com/knowledge/paleo/food-dyes-health/
Customer Experience Day (CX Day) is a special occasion for SCIEX, celebrated every first Tuesday in October. It’s a day dedicated to recognizing the incredible value of our customers and the relentless dedication of our associates who strive to make every interaction meaningful. At SCIEX, our commitment to customer experience is woven into the fabric of everything we do. From providing cutting-edge solutions to offering unwavering support, we aim to build lasting relationships and exceed expectations. Join us as we delve into the insights from our leaders on what customer experience means to SCIEX and how it shapes our journey.
With the launch of the ZenoTOF 8600 system, EAD has taken a significant leap forward in becoming a routine tool for metabolomics and lipidomics workflows. Building on the foundation laid by the ZenoTOF 7600 system, the 8600 system introduces enhanced sensitivity, function speed improvements, and multimodal capabilities that make EAD more practical and scalable for daily use. This blog explores how these advancements are transforming EAD from a specialized technique into a robust and accessible solution for high-throughput structural analysis, enabling researchers to unlock deeper insights with greater efficiency.
Posted by
You must be logged in to post a comment.
Share this post with your network