GEN-MKT-18-7897-A
Oct 11, 2017 | Blogs, Technology | 0 comments
If you are working with complex assays that demand exceptionally selective quantitative and qualitative performance, sometimes even the most powerful LC-MS/MS technology can’t always cut it alone.
Perhaps you are struggling to separate isobaric species, isolate challenging co-eluting analytes or reduce high background noise? Regardless of your challenge, the outcome is the same. You probably aren’t getting the levels of quantitation or characterization you need, so method development has become cumbersome, and workflow performance is suffering.
Now you can bring a new dimension of selectivity to your LC-MS/MS analysis on select SCIEX Triple Quad™, QTRAP® and TripleTOF® Systems with SelexION® Differential Mobility Separation (DMS) Technology. The SelexION DMS cell:
Harness the power of differential mobility separations to simplify your sample preparations, while achieving unprecedented levels of selectivity. Find out more by downloading the SelexION brochure.
How does it work?Gas phase differential mobility separation within the SelexION device planar mobility cell is based on the ion’s size and shape, and the difference between their unique differential mobilities across high and low energy fields. Gas phase separation occurs prior to entering the mass analyzer where the compounds are then further separated by m/z ratios.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
In the field of food chemistry and health, Prof. Nils Helge Schebb and his team at the University of Wuppertal are at the forefront of applying cutting-edge analytical methods to investigate how dietary components affect inflammation and chronic disease. Their work focuses on lipid mediators, particularly oxylipins, and how these molecules can be precisely measured and interpreted using liquid chromatography-tandem mass spectrometry (LC-MS).
Posted by
You must be logged in to post a comment.
Share this post with your network