GEN-MKT-18-7897-A
Oct 11, 2017 | Blogs, Technology | 0 comments
If you are working with complex assays that demand exceptionally selective quantitative and qualitative performance, sometimes even the most powerful LC-MS/MS technology can’t always cut it alone.
Perhaps you are struggling to separate isobaric species, isolate challenging co-eluting analytes or reduce high background noise? Regardless of your challenge, the outcome is the same. You probably aren’t getting the levels of quantitation or characterization you need, so method development has become cumbersome, and workflow performance is suffering.
Now you can bring a new dimension of selectivity to your LC-MS/MS analysis on select SCIEX Triple Quad™, QTRAP® and TripleTOF® Systems with SelexION® Differential Mobility Separation (DMS) Technology. The SelexION DMS cell:
Harness the power of differential mobility separations to simplify your sample preparations, while achieving unprecedented levels of selectivity. Find out more by downloading the SelexION brochure.
How does it work?Gas phase differential mobility separation within the SelexION device planar mobility cell is based on the ion’s size and shape, and the difference between their unique differential mobilities across high and low energy fields. Gas phase separation occurs prior to entering the mass analyzer where the compounds are then further separated by m/z ratios.
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network