GEN-MKT-18-7897-A
Oct 11, 2017 | Blogs, Technology | 0 comments
If you are working with complex assays that demand exceptionally selective quantitative and qualitative performance, sometimes even the most powerful LC-MS/MS technology can’t always cut it alone.
Perhaps you are struggling to separate isobaric species, isolate challenging co-eluting analytes or reduce high background noise? Regardless of your challenge, the outcome is the same. You probably aren’t getting the levels of quantitation or characterization you need, so method development has become cumbersome, and workflow performance is suffering.
Now you can bring a new dimension of selectivity to your LC-MS/MS analysis on select SCIEX Triple Quad™, QTRAP® and TripleTOF® Systems with SelexION® Differential Mobility Separation (DMS) Technology. The SelexION DMS cell:
Harness the power of differential mobility separations to simplify your sample preparations, while achieving unprecedented levels of selectivity. Find out more by downloading the SelexION brochure.
How does it work?Gas phase differential mobility separation within the SelexION device planar mobility cell is based on the ion’s size and shape, and the difference between their unique differential mobilities across high and low energy fields. Gas phase separation occurs prior to entering the mass analyzer where the compounds are then further separated by m/z ratios.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network