GEN-MKT-18-7897-A
Jan 26, 2018 | Biopharma, Blogs, Life Science Research, Proteomics, Technology | 0 comments
There’s no doubt about it, biopharma drug development is experiencing phenomenal growth and presents a variety of challenges not experienced in small molecule development. Some of these challenges are in the selective and sensitive quantitation of peptides and proteins in complex matrices. These large molecule analytes can suffer from matrix interferences, poor fragmentation and lack of quality unique peptides, or transitions compared to background, all which can affect the quality of analysis.
Traditional mass spectrometry (LC-MS/MS) assays continue to be highly effective for large molecule quantitation, but what if you need something more selective? What if you could easily ‘upgrade’ your already powerful mass spec? Thanks to advancements in mass spectrometry technology there is now an option that can be a game changer for peptide and protein quantitation workflows.
We are talking about the SelexION® Differential Mobility Separation (DMS) device. It offers a unique enhancement to your SCIEX mass spec, helping to remove sample interferences and separate isobaric peptide species, resulting in more sensitive and selective detection and quantitation of challenging large molecule targets.
Key Features of SelexION Technology for Peptide and Protein QuantitationUsing differential ion mobility spectroscopy (DMS) as an orthogonal dimension of separation prior to MS detection can provide many advantages:
Can provide enhanced specificity, selectivity, and sensitivity compared to LC-MS/MS alone
Do you want to know more? We thought you might, so we have worked on a library of tech notes to support you in your quest to achieve high performing peptide and protein quantitation workflows in drug discovery and development. Download the eBook and get access to technical papers, webinars, and so much more.
Find out about The Science Behind SelexION Differential Ion Mobility Technology and How SeleXION Addresses Your Biggest Analytical Challenges.
Download eBook >
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
In the field of food chemistry and health, Prof. Nils Helge Schebb and his team at the University of Wuppertal are at the forefront of applying cutting-edge analytical methods to investigate how dietary components affect inflammation and chronic disease. Their work focuses on lipid mediators, particularly oxylipins, and how these molecules can be precisely measured and interpreted using liquid chromatography-tandem mass spectrometry (LC-MS).
Investing in a new liquid chromatography-mass spectrometry (LC-MS) system is a big decision, especially when your lab handles a wide variety of analytical tasks. With so many options out there, it’s easy to feel overwhelmed.
Posted by
You must be logged in to post a comment.
Share this post with your network