GEN-MKT-18-7897-A
May 2, 2018 | Blogs, Forensic | 0 comments
Forensics depend on detection of even the smallest compounds to deliver results you can rely on. You need fast analysis methods that provide highly accurate data across a multitude of compounds and biomarkers, which enable you to uphold result integrity and get the truth from your samples.
Mass spectrometry has become fundamental to the evolution of forensic science. As instruments have become more sophisticated, law enforcement can now get results from the smallest samples of lingering traces of crime, in a manner that will stand up in court. However, the ever-increasing sensitivity and throughput requirements of forensic assays can pose method development challenges, even for the most powerful LC-MS/MS technology.
Getting the Right Answer is Crucial to Your Forensic InvestigationAs with many applications of quantitative analysis, forensic analytes can be difficult to accurately detect because of complex matrices or the presence of chemical interferences. Furthermore, compounds may be isobaric and consequentially challenging to separate with conventional separation technology.
Where LC-MS/MS sensitivity alone is not enough for complex assays that demand exceptionally selective quantitative and qualitative performance, Differential Ion Mobility Technology has proven to be a valuable addition.
SelexION® DMS Technology Will Breakthrough Sensitivity BarriersSelexION DMS Technology, coupled with QTRAP or TripleTOF LC-MS systems, can separate analytes of identical mass, reduce chemical noise, and improve quantitative accuracy, to rapidly deliver the forensic data you need. You can benefit from high throughput methods with little or no sample preparation and minimal chromatographic retention.
DMS separates ions based on the difference between their ion mobility’s in a high and low electric field in gases at or near atmospheric pressure. SelexION is placed in front of the inlet of the mass spectrometer, and the ionized molecules travel into the orthogonal geometry shaped DMS cell. Ions are separated on mobility scale due to differences in molecular size and shape, thereby providing highly selective analysis with minimal background interferences.
Advantages of the planar DMS geometry include:
SelexION offers a unique approach to separation that is unmatched by any other available method. Download the e-book to find out how we achieved LOD of 0.05 ng/mL and LOQ of 0.5 ng/mL using SelexION technology in the analysis of methyldienolone in urine, which were otherwise 2 and 5 ng/mL respectively without.
Find out about The Science Behind SelexION Differential Ion Mobility Technology and how SeleXION Addresses Your Biggest Analytical Challenges.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network