GEN-MKT-18-7897-A
Sep 11, 2018 | Blogs, Forensic | 0 comments
Imagine being blindfolded, sent into a large (dark) room filled with obstacles and challenged to find an item, but you don’t know what that item is, and you have never seen it before. Then you must do the same again the next day, but you are looking for a different item, and it will be in a different place. The phrase fumbling around in the dark comes to mind!
Well, this is what it often feels like for forensic toxicologists trying to keep up with the unpredictable minefield of designer drugs — novel psychoactive substances (NPS).
NPS are synthetic chemicals, whether legal or illegal, closely related to known psychoactive compounds but with slightly altered composition. Not only does this make them difficult to recognize in routine screening, the fact that they are continually evolving – to evade regulation and defy law enforcement efforts — leaves drug screening labs in the dark on what compounds to target.
As if things aren’t tough enough, labs often receive wide varieties of sample types, ranging from blood and urine to hair and oral fluids, with complex biological components and challenging matrices. But it doesn’t stop there, some of these drugs are so potent that users only take a tiny amount, so the drug concentration is very low.
Fumbling around in the dark? Definitely! So, let’s remove the blindfold and shed some light on the matter.
Traditionally drug tests employ a range of targeted methods, and LC-MS/MS is recognized as one of the most efficient and reliable techniques available. The challenge is that these methods can only analyze known substances, limiting drug detection to compounds found on lists of pre-characterized analytes. In other words, if it’s not on the list, it won’t be seen.
How can toxicologists tackle the challenge of never-before-seen drugs? They need a screening tool that can detect trace amounts of unusual components in complex biological samples, even without any prior knowledge of their structural identities. This is the equivalent to removing the blindfold, turning the lights on, putting the obstacles aside and placing the item on a pedestal.
When our researchers here at SCIEX set out to do something, they don’t stop until they get there. As the opioid epidemic becomes the center of the drug overdose crisis, our team sought to develop a non-targeted screening workflow to screen novel fentanyl and its analogs in forensic biological samples.
Fill out the form on the right to download the technical note and learn more.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network