GEN-MKT-18-7897-A
Oct 5, 2018 | Blogs, Forensic | 0 comments
Sadly, the world is a volatile place. The threat of organic explosive use by terrorists and criminals is very much with us, posing a significant danger to people worldwide. The rising concern for public safety is a top priority for national security organizations around the world, to be able to protect citizens, but also to act quickly in the event of an incident.
From fireworks to firearms, if an explosion occurs a detailed investigation reveals vital clues that help investigators piece together what happened. Whether in a war zone or civilian spaces, information from an exploded device will not only provide answers to support a case but will help us to assess better and understand the devastation that these objects can leave behind.
Advanced Analysis of Organic ExplosivesWith the daily occurrence of explosives found in crime scenes, advanced forensic analysis after blasts will help us to solve more crimes, stay ahead of more attacks and help neutralize threats. But it can be challenging to analyze trace amounts of organic explosive residue. Traditional analytical methods often fail to provide the essential throughput and selectivity required to identify key components of a crime scene involving explosives.
Forensic scientists need sensitive and accurate screening techniques to identify explosive materials, fast.High-resolution liquid chromatography-mass spectrometry (HPLC-MS) provides the answer. With acquisition rates at up to 100 MS/MS per second and the ability to perform comprehensive analysis, samples left behind from organic explosives can be analyzed in under three minutes. This, of course, includes the 14 most important known explosives making it hard to find another analytical method that comes close. HPLC-MS offers a greater level of explosive occurrence information leading to increased confidence in compound identifications.
We can bring this to life for you in this technical note: High Throughput Platform for Confident Identification and Quantitation of Organic Explosives. You will see how the SCIEX X500R System powered by SCIEX OS Software delivers fast, specific and sensitive analysis of the most common organic explosives encountered in forensic analytical settings, and how we achieve the levels of performance detailed above.
Complete the form on the right to download the Forensics Compendium that features this tech note.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network