GEN-MKT-18-7897-A
Oct 5, 2018 | Blogs, Forensic | 0 comments
Sadly, the world is a volatile place. The threat of organic explosive use by terrorists and criminals is very much with us, posing a significant danger to people worldwide. The rising concern for public safety is a top priority for national security organizations around the world, to be able to protect citizens, but also to act quickly in the event of an incident.
From fireworks to firearms, if an explosion occurs a detailed investigation reveals vital clues that help investigators piece together what happened. Whether in a war zone or civilian spaces, information from an exploded device will not only provide answers to support a case but will help us to assess better and understand the devastation that these objects can leave behind.
Advanced Analysis of Organic ExplosivesWith the daily occurrence of explosives found in crime scenes, advanced forensic analysis after blasts will help us to solve more crimes, stay ahead of more attacks and help neutralize threats. But it can be challenging to analyze trace amounts of organic explosive residue. Traditional analytical methods often fail to provide the essential throughput and selectivity required to identify key components of a crime scene involving explosives.
Forensic scientists need sensitive and accurate screening techniques to identify explosive materials, fast.High-resolution liquid chromatography-mass spectrometry (HPLC-MS) provides the answer. With acquisition rates at up to 100 MS/MS per second and the ability to perform comprehensive analysis, samples left behind from organic explosives can be analyzed in under three minutes. This, of course, includes the 14 most important known explosives making it hard to find another analytical method that comes close. HPLC-MS offers a greater level of explosive occurrence information leading to increased confidence in compound identifications.
We can bring this to life for you in this technical note: High Throughput Platform for Confident Identification and Quantitation of Organic Explosives. You will see how the SCIEX X500R System powered by SCIEX OS Software delivers fast, specific and sensitive analysis of the most common organic explosives encountered in forensic analytical settings, and how we achieve the levels of performance detailed above.
Complete the form on the right to download the Forensics Compendium that features this tech note.
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network