GEN-MKT-18-7897-A
Oct 5, 2018 | Blogs, Forensic | 0 comments
Sadly, the world is a volatile place. The threat of organic explosive use by terrorists and criminals is very much with us, posing a significant danger to people worldwide. The rising concern for public safety is a top priority for national security organizations around the world, to be able to protect citizens, but also to act quickly in the event of an incident.
From fireworks to firearms, if an explosion occurs a detailed investigation reveals vital clues that help investigators piece together what happened. Whether in a war zone or civilian spaces, information from an exploded device will not only provide answers to support a case but will help us to assess better and understand the devastation that these objects can leave behind.
Advanced Analysis of Organic ExplosivesWith the daily occurrence of explosives found in crime scenes, advanced forensic analysis after blasts will help us to solve more crimes, stay ahead of more attacks and help neutralize threats. But it can be challenging to analyze trace amounts of organic explosive residue. Traditional analytical methods often fail to provide the essential throughput and selectivity required to identify key components of a crime scene involving explosives.
Forensic scientists need sensitive and accurate screening techniques to identify explosive materials, fast.High-resolution liquid chromatography-mass spectrometry (HPLC-MS) provides the answer. With acquisition rates at up to 100 MS/MS per second and the ability to perform comprehensive analysis, samples left behind from organic explosives can be analyzed in under three minutes. This, of course, includes the 14 most important known explosives making it hard to find another analytical method that comes close. HPLC-MS offers a greater level of explosive occurrence information leading to increased confidence in compound identifications.
We can bring this to life for you in this technical note: High Throughput Platform for Confident Identification and Quantitation of Organic Explosives. You will see how the SCIEX X500R System powered by SCIEX OS Software delivers fast, specific and sensitive analysis of the most common organic explosives encountered in forensic analytical settings, and how we achieve the levels of performance detailed above.
Complete the form on the right to download the Forensics Compendium that features this tech note.
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network