GEN-MKT-18-7897-A
Jan 14, 2019 | Blogs, Food / Beverage | 0 comments
Part 1: Cannabis is Legal in Canada – How Did We Get Here? Part 2: Canada’s Focus on Cannabis Quality and Safety Intensifies
Welcome to the third in a series of blogs from the cannabis team at SCIEX, designed to bring you up to speed and put you in the lead of the recently legalized cannabis market in Canada.
‘Protecting public health and safety by allowing adults access to legal cannabis’ is high on Health Canada’s agenda. In the last blog, we explored the tests involved in ensuring legal cannabis is safe, here we will examine the technology behind these tests.
What the Analytical Testing Lab Needs to KnowWhether cultivation, processing, analyzing or selling, anyone planning to operate in the market must be a cannabis license holder under the Act. Legal cannabis products must be produced within the rules of the law and undergo rigorous testing before they can be made available to the public.
Regulatory standards for cannabis testing are expected to evolve, and it would be fair to say that the cannabis testing landscape is not only uncertain, but it is complex. Here’s a quick rundown on where things stand at the time of writing this blog:
With the challenges outlined above, the question is:
What Techniques Best Suit These Testing Demands?Labs need the right instruments and methods to stay ahead of regulation, keep up with demand and deliver fast and reliable results – better than the competition. We believe this can be achieved with the most advanced technologies that offer high-throughput validated methods for accurate results, with complete workflows that combine tests into a single analysis.
The industry is now turning to instruments that are proven in more established applications, such as food and pharma, and have already been applied to cannabis testing with great success. High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) is one of these technologies.
Cannabis has historically been monitored by gas chromatography-mass spectrometry (GC-MS) requiring complicated sample preparation with derivatization and relatively long sample run times. LC-MS/MS has now emerged as one of the most reliable and robust high-throughput analytical methods available, tackling the demands of cannabis testing head on.
How We Can HelpSCIEX offers everything licensed analytical testing labs, regulatory laboratories, and licensed producers need to perform a wide variety of tests to Health Canada standards while cutting tests down to record time.
We have pioneered standardized testing methods that enable you to overcome the complex analytical nature of cannabis in regulated markets. Best-in-class LC-MS/MS technology has been applied to potency, terpene, pesticide, and contaminant analysis, allowing you to match all chemical residues to the lower possible limit, within a single instrument. Users experience superior selectivity, sensitivity, and ruggedness without extensive sample preparation.
To help your lab meet demand and get ahead of new regulations, we have put together an exclusive free cannabis testing info kit packed with useful information, including methods and solutions to common screening challenges.
Fill out the form on your right to download the info kit, and take the first step towards fast, accurate, and compliant cannabis testing.
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network