GEN-MKT-18-7897-A
Jul 22, 2019 | Blogs, Clinical | 0 comments
Are you thinking about replacing existing immunoassay technology with clinical mass spectrometry? Keep reading to discover how the 3 “S”s will help you make the decision.
1. How does sensitivity play a role?
Many of the analytes measured in a clinical chemistry lab exist at nanogram and picogram per milliliter levels. We’re talking parts per billion and parts per trillion territory. Antibody-based applications might struggle to accurately detect and quantify biological compounds at such low concentrations, but LC-MS/MS provides the ability to accurately detect analytes at these ultra-low concentrations.
2. Is specificity enhanced when using mass spectrometry?
Whether the immunoassay is based on a monoclonal or polyclonal antibody approach, the compound in question is being detected based on the tertiary structure of the molecule. Because biological compounds such as steroids can have almost identical chemical structures, antibody-based techniques might struggle with molecular specificity. Mass spectrometry can identify compounds by the fragmentation pattern of the molecule, meaning its characteristic product ions, providing the enhanced specificity needed for the correct identification of structurally-similar compounds.
3. How important is selectivity?
In clinical chemistry, the variety of matrices, such as whole blood, plasma, serum, saliva, and vitreous humor, can make identification a challenge. Complex matrices can cause problems in methods that are susceptible to interference. Mass spectrometry uses powerful liquid chromatography to separate the analyte of interest from the matrix and detect and quantify it accurately. More advanced options such as QTRAP® technology available on the SCIEX Citrine® LC-MS/MS system takes it to another level—handling a matrix such as hair with ease.
There are many more benefits that mass spectrometry can provide, such as multiplexing to analyze more compounds in a single injection or developing your own assays as Lab Developed Tests (LDTs).
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network