3 Advantages of Clinical Mass Spectrometry

Jul 22, 2019 | Blogs, Clinical | 0 comments

Are you thinking about replacing existing immunoassay technology with clinical mass spectrometry?  Keep reading to discover how the 3 “S”s will help you make the decision.

1. How does sensitivity play a role?

Many of the analytes measured in a clinical chemistry lab exist at nanogram and picogram per milliliter levels.  We’re talking parts per billion and parts per trillion territory.  Antibody-based applications might struggle to accurately detect and quantify biological compounds at such low concentrations, but LC-MS/MS provides the ability to accurately detect analytes at these ultra-low concentrations.

2. Is specificity enhanced when using mass spectrometry?

Whether the immunoassay is based on a monoclonal or polyclonal antibody approach, the compound in question is being detected based on the tertiary structure of the molecule.  Because biological compounds such as steroids can have almost identical chemical structures, antibody-based techniques might struggle with molecular specificity.  Mass spectrometry can identify compounds by the fragmentation pattern of the molecule, meaning its characteristic product ions, providing the enhanced specificity needed for the correct identification of structurally-similar compounds.

3. How important is selectivity?

In clinical chemistry, the variety of matrices, such as whole blood, plasma, serum, saliva, and vitreous humor, can make identification a challenge.  Complex matrices can cause problems in methods that are susceptible to interference.  Mass spectrometry uses powerful liquid chromatography to separate the analyte of interest from the matrix and detect and quantify it accurately.  More advanced options such as QTRAP® technology available on the SCIEX Citrine® LC-MS/MS system takes it to another level—handling a matrix such as hair with ease. 

There are many more benefits that mass spectrometry can provide, such as multiplexing to analyze more compounds in a single injection or developing your own assays as Lab Developed Tests (LDTs). 

Discover high-throughput LNP-mRNA integrity profiling

Lipid-based nanoparticles (LNPs) are effective non-viral vectors for delivering messenger RNA (mRNA) products, most notably used for production of vaccines against the recent SARS-CoV-2 pandemic.

Eliminate chick culling with innovative technology

While it sometimes seems questionable whether humanity and modern technology can coexist, technological advances in science can help pave the way to more compassionate business practices.

Using wastewater monitoring to assess exposure to PFAS

Per-and polyfluorinated alkyl substances (PFAS) are known for their water- and grease-resistant properties, which make them useful in many everyday items. In fact, a study from 2020 estimated over 200 “use categories” covering more than 1,400 individual PFAS compounds in commercial products—they are truly all around us. Due to their extensive presence and potentially harmful effects (these effects are still mostly uncertain), exposure to PFAS is a growing concern. Humans and wildlife have been exposed to these chemicals through a variety of routes, including food packaging, drinking water and cleaning products.

Posted by


Submit a Comment