GEN-MKT-18-7897-A
Jul 23, 2019 | Blogs, Food / Beverage | 0 comments
When it comes to protecting people from harmful pesticide residues in food, standards around the world are anything but consistent. While the European public has a reasonable level of confidence that their food is below the maximum limits for pesticide residues, it’s a different story for consumers in the United States.
The recent annual EU report on pesticide residues in food found that 95.9% of 88,247 samples from 28 EU states were free of pesticide residues, or contained traces that were below the legally permitted maximum levels. Jump across the Atlantic and America is lagging behind! The nation is using a shocking number of pesticides (1 in 10) that contain ingredients either banned or not approved in not only Europe but also in China and Brazil.
Unfortunately, the difference in pesticide use is typical of many countries around the world, where the guidelines continue to vary considerably. But it’s important to remember that our food supply is global and that the US is the largest exporter of food products worldwide. Regardless of where the produce is grown, there are global standards to consider. While regulatory processes catch up, testing remains the most effective way to protect our food supply from hundreds of pesticides used around the world.Screening Food for Pesticides to Meet Global StandardsFood testing laboratories have traditionally relied on gas chromatography coupled with mass spectrometry (GC–MS) for rapid pesticide detection in large numbers of samples. However, the regulated pesticide list is expanding while the highest permitted levels of pesticide residues in food and feed are becoming even more restrictive. For example, the EU legislation sets a general default maximum residue level (MRL) of 0.01 mg/kg when a pesticide is not specifically mentioned.
What this means is that, to be on the safe side, laboratories need tools that allow them to analyze thousands of substances at low concentrations, in a variety of food and feed samples, such as fruit, vegetables, and animal byproducts. This is where liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods serve as an alternative to GC-MS for comprehensive screening.
LC-MS/MS offers food researchers:
Unfortunately, mass spectrometry systems are typically perceived as expensive and complex–but we’re busting the myth! The SCIEX Triple Quad™ 3500 System provides labs with robust and reliable mass spectrometry technology at an affordable price to efficiently and effectively screen for pesticides.
A Robust and Reliable Pesticide Screening MethodTo demonstrate the capabilities of the Triple Quad 3500 System in pesticide screening, our team developed a method that uses simple, generic extraction procedures and MRM mode to screen food samples for hundreds of pesticides in a single injection.
See how we met a detection limit of 2 ng/mL or lower for these pesticides, with good linearity across 4 orders of magnitude. Download the SCIEX Triple Quad 3500 compendium by filling out the form on your right.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network