GEN-MKT-18-7897-A
Oct 17, 2019 | Blogs, Food / Beverage | 0 comments
The title says it all. Boar taint is a complex subject. For some, it’s not an issue. Others argue that it’s one of the biggest challenges to pork quality. It’s a very subjective response.
In her blog, Dr. Laura Hancox illustrates the striking difference between the reactions of men and women after sniffing 2 specific pots: one filled with skatole (3-methyl-indole), and one filled with androstenone (5α-androst-16-ene-3-one). These are the 2 compounds of boar taint.
What Hancox experienced and witnessed is consistent with several studies that found that women seem to be more sensitive to boar taint. 1,2 It’s also interesting because studies have also found that about 75% of consumers can detect and taste boar taint.3 Of those consumers, 15 -30% are unable to detect androstenone but seem able to identify skatole.4,5 Clearly, these are pretty good reasons to take boar taint more seriously.
The pork producers’ painThis is where things get controversial. In efforts to eliminate tainted pork, pork producers usually resort to piglet castration, which raises animal welfare concerns. The European Union is leading the way to seek streamlined alternative solutions to pig castration. The EU Directive 2001/93/EEC, for example, lays down the minimum standards required to protect pig welfare. France and Germany are leading the pack by outlawing the castration of piglets without anesthetic by the end of 2021.
So how does a pork producer prevent tainted boars from entering the fresh food market?
Theoretically, it’s simple: identify tainted carcasses before they are distributed. That means pork producers need to quantify both androstenone and skatole. By doing so, they can remove pigs with unacceptable levels of boar taint at the slaughter line.5
However, the industry struggles to find cost-effective, rapid, validated and standardized methods that can detect boar taint compounds.
Finding the right methodAs analytical scientists, we are always looking for cutting-edge and innovative ways to solve our problems with boar taint. Common techniques include:
Effectively monitor boar taint in 8 stepsHow about an 8-step process that takes 8 seconds per analysis? The focus is on speed and accuracy. We have partnered with slaughterhouse industry experts at Phytronix to deliver a robust, rugged and rapid analytical solution for determining boar taint in meat products.
Here are the top 3 key advantages of using a SCIEX mass spectrometer and Laser Diode Thermal Desorption (LDTD):
Download the fact sheet to find out what makes this 8-step, 8-second process so effective >
References
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network