Use a Bigger SWATH Library and Get More Protein Coverage From Your Sample

Mar 18, 2016 | Blogs, Life Science Research | 0 comments

Calling all SWATH® Acquisition users!

If you have a TripleTOF® System and you’re using SWATH Acquisition for your quantitative proteomics experiments, you’ve made the right choice. SWATH is a data independent workflow that enables data to be acquired for every detectable analyte in a complex sample. You create a digital map of the sample that can be mined for new information any time new biological insights are hypothesized. It’s all there!

Since the introduction of the workflow at HUPO 2010 in Sydney, Australia, we have been working to further improve the workflow. Optimizations in data acquisition such as smaller and variable Q1 window widths and increased instrument dynamic range have provided increased depth of coverage for your proteomics sample, without compromising reproducibility or data quality. 

But what about data processing? Can we improve even further?

The answer is yes! Typically an ion library is used for targeted processing of SWATH data for peptide and protein identification and quantitation. The ion library contains the masses of the peptide ions, sequence-specific fragment ions, relative fragment intensities, and relative retention times, and is easily generated by performing a simple data-dependent acquisition and database search.

In this study, scientists from SCIEX demonstrate that for biological systems that will be studied repeatedly, it is worth taking the extra time to create a deeper ion library as much more information can be extracted from the SWATH acquisition data.

For example, SWATH replicates of a HEK human cell lysate were acquired and processed using three different libraries:

  1. A simple 1D human cell line library generated using traditional data-dependent acquisition strategy (IDA)
  2. A 2D human cell line library using a more in-depth 2D off-line fractionation/IDA strategy
  3. Pan-Human library (PHL) library using a large number of different human cell lines extensive fractionation and IDA strategy 

Figure 1. The Impact of Deeper Ion Libraries on Extraction of Quantitative Data from Human Cell Lysate SWATH® Acquisition Data. 

As shown in Figure 1, a 118% gain in quantified proteins was observed using a simple ion library (1D HEK) and an extensive ion library (PHL). And the quality and reproducibility of the quantitation are maintained even into the low abundant protein/peptide regime.

A researcher can balance the library generation time with the depth of coverage needed. The three libraries outlined here took increasingly more time to generate. A simple IDA experiment can take only a matter of hours. A 2D fractionation followed by LC-MS/MS on each fraction can be performed in a matter of days. And some groups have invested significantly more time in library generation using multiple cell types and a large degree of fractionation to cover as much of the proteome as possible.

This work also highlights the superior dynamic range of quantitative information that is present in a SWATH Acquisition data file over the traditional data dependent approaches for quantitative proteomics. To read more details of this work, and to see what size

To read more details of this work, and to see what size ion library would make the most sense for your biological system of study, download the full technical note.

 

FDA’s final rule on LDTs: what does it mean for clinical laboratories?

On April 29, 2024, the U.S. Food and Drug Administration (FDA) announced a final rule regulating laboratory developed tests (LDTs) as in vitro diagnostic devices (IVDs) under the Federal Food, Drug and Cosmetic Act (FD&C Act). This rule amends FDA’s regulations to state that in vitro diagnostic tests “manufactured” by clinical laboratories fall within the scope of the FDA regulatory oversight and is poised to dramatically shift the way clinical diagnostic laboratories in the United States develop and offer LDTs in the future. Read this blog post for a basic overview of the scope, intent and implications of this final rule, including the regulatory requirements, exceptions and timeline for implementation.

Detecting low levels of drugs and their metabolites in hair and nail samples using LC-MS/MS

You probably have heard of testing blood and urine samples for the presence of drugs and their metabolites. But do you know about the benefits of hair and nail analysis? In a recent webinar, Tina Binz, Deputy Head of the Center for Forensic Hair Analysis, University of Zurich, discussed the benefits of developing comprehensive and sensitive LC-MS/MS for the detection of low-level drugs and metabolites in keratinized matrices.

LC-MS system replacement: Are you ready?

Meeting deadlines in a bioanalysis laboratory can be a big challenge. Older, less sensitive and less reliable LC-MS systems make it even more difficult. Even the disruption caused by the installation and validation can be disconcerting and delay decisions. Does this sound familiar?

Posted by

Christie Hunter is the Director of Applications at SCIEX. Christie has worked at SCIEX for 20 years, pioneering many workflows in quantitative proteomics. Christie was an early user of SWATH acquisition and played a big role in evolving the workflows and driving adoption of this new data independent approach with many proteomic researchers. Christie and her team are focused on developing and testing innovative MS workflows to analyze biomolecules, and work collaboratively with the instrument, chemistry and software research groups.

Tags


0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial