GEN-MKT-18-7897-A
Mar 11, 2024 | Blogs, Forensic, SCIEX OS software, Toxicology, ZenoTOF 7600 system | 0 comments
Read time: 4 minutes
LC-MS/MS is a powerful analytical tool in forensic toxicology testing that can support a variety of testing regimes such as screening, confirmation and quantitative workflows. More specifically, analysis of NPS using LC-MS/MS provides many advantages, including the ability to reliably detect new drugs and their metabolites from a variety of biological matrices.
In this blog, we are going to discuss the benefits of accurate mass spectrometry for non-targeted NPS analysis and how those benefits can provide additional levels of confirmation. Forensic toxicologists are often concerned about screening for and identifying unknown substances that have recently surfaced on the recreational drug market. The speed and sensitivity of accurate mass spectrometers can be leveraged to perform MS scanning experiments to search for unknown molecular ions while also performing selective MS/MS scanning functions. This provides comprehensive compound fragmentation on all the analytes present in the sample. Because these fragments are acquired in high resolution, the detected NPS can be accurately identified through spectra library database searching.
Accurate mass spectrometers, such as quadrupole time-of-flight (QTOF) systems, are flexible platforms that can support both quantitative and qualitative analysis. Below are some of the most common acquisition methods that can be leveraged for both targeted and non-targeted workflows.
Targeted workflows:
Check out this tech note to learn how the MRMHR on the SCIEX X500R QTOF system was used for the quantitation and identification of low levels of NPS in human urine samples: Read now
Non-targeted workflows:
Acquisition methods such as data-dependent acquisition (DDA) and SWATH data-independent acquisition (DIA) can be leveraged to acquire high-resolution spectra from single sample sets in a routine testing laboratory environment.
Learn more about the benefits of DDA and SWATH DIA for non-targeted workflows.
And check out these technical notes that compare the two workflows for the screening and quantitation of NPS in biological matrices:
Fast Forensic Toxicological Screening and Quantitation in Under 3 Minutes
Expanding NPS screening capabilities in the forensic toxicology laboratory
In summary, QTOF systems are the mass spectrometers of choice for NPS screening because of their ability to acquire high-resolution accurate mass precursor and fragment data to improve confidence in NPS detection, providing added flexibility for non-targeted workflows. The use of accurate mass spectrometry for NPS analysis reduces the effects of complex matrices and background interferences, which results in higher data quality, lower LOQs and fewer false positives. Overall, the ability to acquire full MS/MS fragmentation spectra of all the analytes present in the samples enhances compound identification through spectral library matching. In addition, previously acquired data sets can be retrospectively analyzed to look for the presence of newly identified NPS should new questions about a sample arise.
ACCURATE MASS SOLUTIONS FROM SCIEX
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network