GEN-MKT-18-7897-A
Aug 20, 2015 | Blogs, Life Science Research, Proteomics | 0 comments
A recent study by Katy Williams (UCSF), Christie Hunter (SCIEX), and Andrew Olsen (Advaita) used the iPathwayGuide within the OneOmics cloud computing environment to help understand how placental development can go awry during certain pregnancy complications such as pre-eclampsia.
In this pilot study, the researchers studied cytotrophoblast differentiation. Cytotrophoblasts are the cells that are mainly responsible for establishing an anchor between the developing embryo and placenta with the uterine wall. The researchers compared cytotrophoblasts from the primary culture at both 2nd trimester and full term. SWATH proteomics data acquired using a SCIEX TripleTOF® 6600 System were analyzed in OneOmics using iPathwayGuide to identify differentially regulated proteins and their associated pathways, biological processes, and molecular functions. The proteomics data were then compared with RNASeq transcriptomics data acquired using an Illumina HiSeq System. Both the proteomics data and transcriptomics data were correlated using the OneOmics Platform and iPathwayGuide in the cloud. This meta-analysis allowed the researchers to discover common pathways and processes between the data sets as well as those only observed in the proteomic or transcriptomic datasets alone.
The pilot study helped to illuminate the biological significance of multiple proteins and pathways and provided an effective pipeline for taking raw data to biological answers.
See the complete study by viewing a 10 minute mini webinar. If you’d like to get a demo of the OneOmics Project, just comment below and we’ll be in touch.
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network