GEN-MKT-18-7897-A
May 8, 2020 | Blogs, Development, Pharma, QA/QC | 0 comments
In my previous blog, I spoke about the FDA recall of angiotensin II receptor blockers like losartan. This recall was due to the presence of genotoxic nitrosamines.
Is a proactive approach the way to mitigate risk?
Recently, the FDA has re-issued the 2018 guidance to industry, “M7(R1) assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk”. Is this going to help? Or should we have a higher focus of qualitative analysis up front?
Companies need to take a look all facets of their supply chain and manufacturing process. They should be able to ensure they can control the active pharmaceutical ingredients (APIs) throughout the process, whether they do it in their own facility or it is outsourced.
How are they going to do this?
Why you need a control strategy
A control strategy is a planned set of controls derived from current product and process understanding that assures process performance and product quality (ICH Q10, Ref. 8).
A control strategy can include, but is not limited to, the following:
How to ensuring better data, by seeing it all
Work previously presented by Prof. Sörgel, at the Institute for Biomedical and Pharmaceutical Research, Nuremberg, Germany on the benefits of this workflow is that with SWATH® Acquisition you are creating a digital record of all the analytes in the sample.
This approach shows:
Watch out for our next blog where we examine some of the analytical challenges of these molecules.You can learn more about how LC-MS/MS solutions can identify, quantify and monitor the required levels of nitrosamine impurities by accessing technical notes and a webinar addressing the characterization and quantification of the genotoxic impurities.
Learn More >
This is part two of an ongoing blog series on genotoxic analysis. Read part one: “What have we learned from the nitrosamine crisis?” and part three: “Developing a method for nitrosamine analysis in pharmaceutical products“.
RUO-MKT-18-11383-A
In the field of food chemistry and health, Prof. Nils Helge Schebb and his team at the University of Wuppertal are at the forefront of applying cutting-edge analytical methods to investigate how dietary components affect inflammation and chronic disease. Their work focuses on lipid mediators, particularly oxylipins, and how these molecules can be precisely measured and interpreted using liquid chromatography-tandem mass spectrometry (LC-MS).
Investing in a new liquid chromatography-mass spectrometry (LC-MS) system is a big decision, especially when your lab handles a wide variety of analytical tasks. With so many options out there, it’s easy to feel overwhelmed.
Useful FAQ document to enable researchers to focus on their scientific discoveries and insights rather than the complexities of data management.
Posted by
You must be logged in to post a comment.
Share this post with your network