GEN-MKT-18-7897-A
May 8, 2020 | Blogs, Development, Pharma, QA/QC | 0 comments
In my previous blog, I spoke about the FDA recall of angiotensin II receptor blockers like losartan. This recall was due to the presence of genotoxic nitrosamines.
Is a proactive approach the way to mitigate risk?
Recently, the FDA has re-issued the 2018 guidance to industry, “M7(R1) assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk”. Is this going to help? Or should we have a higher focus of qualitative analysis up front?
Companies need to take a look all facets of their supply chain and manufacturing process. They should be able to ensure they can control the active pharmaceutical ingredients (APIs) throughout the process, whether they do it in their own facility or it is outsourced.
How are they going to do this?
Why you need a control strategy
A control strategy is a planned set of controls derived from current product and process understanding that assures process performance and product quality (ICH Q10, Ref. 8).
A control strategy can include, but is not limited to, the following:
How to ensuring better data, by seeing it all
Work previously presented by Prof. Sörgel, at the Institute for Biomedical and Pharmaceutical Research, Nuremberg, Germany on the benefits of this workflow is that with SWATH® Acquisition you are creating a digital record of all the analytes in the sample.
This approach shows:
Watch out for our next blog where we examine some of the analytical challenges of these molecules.You can learn more about how LC-MS/MS solutions can identify, quantify and monitor the required levels of nitrosamine impurities by accessing technical notes and a webinar addressing the characterization and quantification of the genotoxic impurities.
Learn More >
This is part two of an ongoing blog series on genotoxic analysis. Read part one: “What have we learned from the nitrosamine crisis?” and part three: “Developing a method for nitrosamine analysis in pharmaceutical products“.
RUO-MKT-18-11383-A
With the launch of the ZenoTOF 8600 system, EAD has taken a significant leap forward in becoming a routine tool for metabolomics and lipidomics workflows. Building on the foundation laid by the ZenoTOF 7600 system, the 8600 system introduces enhanced sensitivity, function speed improvements, and multimodal capabilities that make EAD more practical and scalable for daily use. This blog explores how these advancements are transforming EAD from a specialized technique into a robust and accessible solution for high-throughput structural analysis, enabling researchers to unlock deeper insights with greater efficiency.
In your lab, time is not just a resource. It’s a necessity and every moment counts. Yet, unplanned downtime can disrupt this delicate balance. Even a brief interruption can set your team back in multiple ways.
In a recent webinar, which is now available on-demand, Holly Lee powerful strategies to tackle complex residue testing. From boosting throughput to fine-tuning method sensitivity, Holly shared key ways to maximize performance across large pesticide panels.
Posted by
You must be logged in to post a comment.
Share this post with your network