GEN-MKT-18-7897-A
Jul 17, 2015 | Blogs, Food / Beverage | 0 comments
Spoiler Alert – How to Save Time Testing for Bacteria in Beer?
Nothing ruins a batch of beer worse than bacteria, specifically Pediococcus and Lactobacillus. Too much of these hop resistant genes can get carried away causing spoilage and sour beer. It is why breweries put every batch of beer through a quality control check before it is sent out to the consumer.
However, sometimes bad batches make it out the door because wild yeasts can be too small to detect using conventional microbial techniques. To ensure accuracy and efficacy, however, the SCIEX food and beverage scientists are putting many a beer to the test using capillary electrophoresis (CE) multiplex PCR (XP-PCR). This process has been proven to simultaneously identify six major genera of beer spoilage bacteria and yeast along with their potential to spoil beer by detecting five hop resistant markers within 24 hours of sampling.
Beer Testing Goes MolecularThe benefit to lab scientists is molecular testing delivers fast results and high-resolution separation. According to Handy Yowanto, Senior Product Manager, SCIEX Genetic Analysis Product, “If you want to skip the guesswork, molecular techniques are the answer. They detect different types of microbes in tank cleaning, brewing process and final product quality check (QC).”
The Message Is This:If you are using conventional microbial culturing techniques along with dye sequencing, you may be missing some bacteria. The reason being is these methods cannot detect hop resistant genes that allow unculturable or slow-growing microorganisms to flourish. Don’t let your beer fall flat. Bacteria can be introduced at any stage of the brewing process, but you can learn how to attack the problem by detecting hop resistant genes.Read the Full Report >
In a recent webinar, which is now available on-demand, Holly Lee powerful strategies to tackle complex residue testing. From boosting throughput to fine-tuning method sensitivity, Holly shared key ways to maximize performance across large pesticide panels.
Whether we are raising glasses of rosé in a vineyard in France or enjoying a lager in a casual street restaurant in China, it is likely that the last thing on many people’s minds is the chemical risks from their beverage. Unless you work in food science, then it might actually be the first thing.
As PFAS regulations tighten globally, laboratory managers are navigating a complex economic landscape. Whether operating in a commercial or non- commercial setting, the pressure to deliver accurate, defensible, and timely PFAS data is mounting. At SCIEX we understand that the right technology can turn this regulatory challenge into a strategic opportunity.
Posted by
You must be logged in to post a comment.
Share this post with your network