GEN-MKT-18-7897-A
Jul 17, 2015 | Blogs, Food / Beverage | 0 comments
Spoiler Alert – How to Save Time Testing for Bacteria in Beer?
Nothing ruins a batch of beer worse than bacteria, specifically Pediococcus and Lactobacillus. Too much of these hop resistant genes can get carried away causing spoilage and sour beer. It is why breweries put every batch of beer through a quality control check before it is sent out to the consumer.
However, sometimes bad batches make it out the door because wild yeasts can be too small to detect using conventional microbial techniques. To ensure accuracy and efficacy, however, the SCIEX food and beverage scientists are putting many a beer to the test using capillary electrophoresis (CE) multiplex PCR (XP-PCR). This process has been proven to simultaneously identify six major genera of beer spoilage bacteria and yeast along with their potential to spoil beer by detecting five hop resistant markers within 24 hours of sampling.
Beer Testing Goes MolecularThe benefit to lab scientists is molecular testing delivers fast results and high-resolution separation. According to Handy Yowanto, Senior Product Manager, SCIEX Genetic Analysis Product, “If you want to skip the guesswork, molecular techniques are the answer. They detect different types of microbes in tank cleaning, brewing process and final product quality check (QC).”
The Message Is This:If you are using conventional microbial culturing techniques along with dye sequencing, you may be missing some bacteria. The reason being is these methods cannot detect hop resistant genes that allow unculturable or slow-growing microorganisms to flourish. Don’t let your beer fall flat. Bacteria can be introduced at any stage of the brewing process, but you can learn how to attack the problem by detecting hop resistant genes.Read the Full Report >
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network