Simultaneously Detect Different Types of Beer Microbes Using XP-PCR

Jul 17, 2015 | Blogs, Food / Beverage | 0 comments

Spoiler Alert – How to Save Time Testing for Bacteria in Beer?

Nothing ruins a batch of beer worse than bacteria, specifically Pediococcus and Lactobacillus. Too much of these hop resistant genes can get carried away causing spoilage and sour beer. It is why breweries put every batch of beer through a quality control check before it is sent out to the consumer.

However, sometimes bad batches make it out the door because wild yeasts can be too small to detect using conventional microbial techniques. To ensure accuracy and efficacy, however, the SCIEX food and beverage scientists are putting many a beer to the test using capillary electrophoresis (CE) multiplex PCR (XP-PCR).  This process has been proven to simultaneously identify six major genera of beer spoilage bacteria and yeast along with their potential to spoil beer by detecting five hop resistant markers within 24 hours of sampling.

Beer Testing Goes Molecular
The benefit to lab scientists is molecular testing delivers fast results and high-resolution separation. According to Handy Yowanto, Senior Product Manager, SCIEX Genetic Analysis Product, “If you want to skip the guesswork, molecular techniques are the answer. They detect different types of microbes in tank cleaning, brewing process and final product quality check (QC).” 

The Message Is This:
If you are using conventional microbial culturing techniques along with dye sequencing, you may be missing some bacteria. The reason being is these methods cannot detect hop resistant genes that allow unculturable or slow-growing microorganisms to flourish.  Don’t let your beer fall flat. Bacteria can be introduced at any stage of the brewing process, but you can learn how to attack the problem by detecting hop resistant genes.Read the Full Report >

Overcoming uncertainty in your PFAS analysis

Just like gum on the bottom of a shoe, the existence of per- and poly-fluorinated alkyl substances (PFAS) in our environment is a sticky one. If you’re in the field of environmental testing, then you’re all too familiar with the threat these substances have on public health. While we have learned a lot about them over the years, there is still much more to understand. With the right detection methods, we can gather the information we need to empower us to make informed decisions on reducing the risks they impose.

6 Signs it’s time for a new vendor

A lab’s success depends on many factors from instrument quality to efficient operations, including being partnered with the right vendor. A vendor is more than just a supplier. They should provide you with a high-level quality of support in maximizing the lifespan and performance of your systems, reducing downtime, enhancing ROI and more. How do you know if you’re partnered with the right one? Here are six signs it might be time to find someone new.

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial