GEN-MKT-18-7897-A
Oct 31, 2015 | Blogs, Food / Beverage | 0 comments
Halloween is the time for lots of trick or treats ranging from chocolate bars to lollipops and oh so good candy corn. However, come October 31, it is time to mind sneaky ingredients that have the best disguise of all. From pork extracts, artificial sweeteners, to stuff that is hard to pronounce, SCIEX digs up some of our recent Food and Beverage studies for some ghoulishly good fun.
Where do Gummy Bears get their Squishiness From?
Gummy bears have to get their gelatinous shape from somewhere, and that somewhere happens to be collagen extracted from skin, bones and connective tissue of cows, chickens, pigs, and fish. ELISA testing, which is typically used to detect these animal proteins in your favorite gummy treats, can produce false negatives or positives in that animal protein markers may not be detected or accurately identified. Now, if only the wrapper read it was tested in a lab using LC-MS/MS could you be more certain your gummy bears and any other candies containing gelatin were pork-free. Read the complete study here.
What do Plastics and Candy have to do with One Another?
Up next are Phthalates, a chemical agent found in plastics that makes them more bendable or harder to break. What does this have to do with candy? Some derivatives are used in wrappers and while it is unknown how much exposure can cause a health risk, some forms have been blamed for endocrine disruption in rats. However, it is not just candy wrappers you will find phthalates in, as it migrates from most packaging to foods. If you are interested in knowing how LC-MS/MS can enhance the detection of phthalates in food and beverage samples, we have the study for you.
Artifical Sweeteners Be Gone
Then there are artificial sweeteners that are better for your teeth and waistline but could cause your trick or treater to crave even more sweets. Sigh. To be sure the label is as true as its ingredients reliable detection is needed. This is where one SCIEX study proved useful as LC-MS/MS proves to be five times faster as well as more than 100 to 1000 fold more sensitive than traditional LC methods.
The Echo® MS+ system is a novel platform for Acoustic Ejection Mass Spectrometry (AEMS) and combines the speed of acoustic sampling with the selectivity of mass spectrometry. This platform has been designed for high throughput analysis of small and large molecules. The technology combines Acoustic Droplet Ejection (ADE), an Open Port Interface (OPI) and could be coupled with the SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system.
The Echo® MS+ system comprises of an open-port interface (OPI) and acoustic droplet ejection (ADE) module which could be coupled with a mass spectrometer. The mass spectrometer could either be a SCIEX Triple Quad 6500+ system or the ZenoTOF 7600 system. This non-liquid chromatography based; high-throughput screening platform enables rapid analysis of compounds at speeds of up to 1 sample/second.
The ability to consistently achieve reproducible results on many complex samples across multiple days is critical to a routine clinical laboratory. Laboratories relying on analytical instrumentation require stability and robustness to perform a variety of screening and confirmatory assays with confidence. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the preferred analytical method in the clinical laboratory to reliably perform clinical testing as it provides best-in-class performance and reliability for the most challenging assays. LC-MS/MS offers the required levels of sensitivity and specificity for the detection and quantitation of molecules from complex biological samples, helping laboratories deliver highly accurate data for a variety of clinically relevant analytes across a wide range of assays.
Posted by
You must be logged in to post a comment.
Share this post with your network