LC-MS/MS Method for Biotherapeutic Drug Development Challenges

Feb 29, 2016 | Biopharma, Blogs | 0 comments

Traditionally, the pharmacokinetic profile of biotherapeutics such as insulin glargineadalimumabtrastuzumab and others, used gold standard LBAs to assess dose-response during drug discovery and development. However, LBAs require a specific antibody reagent to be developed for each mAb variant, a process that is often incompatible with the compressed timeframes encountered during the initial stages of drug development. More recently, LC-MS/MS-based methods have come to the forefront as a feasible approach for the quantification of biotherapeutics in biological matrices, with many of these methods relying on proteolytic digestion of the target mAb and quantification of multiple unique signature peptides, which are equivalent to levels of the whole protein. But, to drive the real biological need, we have to quantify the pharmacologically active or free form of the drug to assess safety, efficacy and proper dosing regimen. Here we present a solution to get the best of both technologies: an LBA strategy to capture the active form of the drug; and an LC-MS assay to selectively quantify the free and circulating drug.

Watch the Webinar >
ELISA / LBA LC-MS
Low LOQ (trade off with selectivity) Faster and cheaper development
High throughput Multiplexing possibilities
Lower equipment costs Internal standards reduce assay variability
Limited linear range and complex calibration More selectivity
Non-specific binding Simultaneous Quant and Catabolite ID
Cross-reactivity with ADA’s Medium throughput
Higher development time/cost Measures total drug and its metabolites/catabolites
Measures only free drug  

 

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Unlocking precision: navigating data conversion in metabolomics

Useful FAQ document to enable researchers to focus on their scientific discoveries and insights rather than the complexities of data management.

Understanding PFAS and its impact on U.S. drinking water

In recent years, per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals,” have become a growing topic of interest due to their persistence in the environment and potential health risks. These synthetic compounds have been widely used in various industrial applications and consumer products since the 1940s. PFAS can be found in the air, soil, and water, and studies have shown that most people have detectable levels of PFAS in their bloodstream. One of the main exposure pathways for humans is through drinking water, particularly in communities located near industrial sites, military bases, or areas where firefighting foam has been used.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial