GEN-MKT-18-7897-A
Mar 16, 2016 | Biopharma, Blogs | 0 comments
Last week we posted a blog on Biologics Bioanalysis Key Challenges, where we presented a webinar on those key challenges. Here are the follow-up questions that were received:
1. You mentioned immunocapture-based sample preparation is more automation friendly. Could you explain how we can transfer the method to a robotic system?Transferring an immunocapture procedure to a robotic system can be very straightforward and done by simply programming every step in the robotic system. We have programmed the entire immunocapture-based sample preparation procedure in the Beckman Biomek® Fx workstation. By simply clicking one bottom on the software interface, Biomek Fx will perform all the programmed sample prep steps.
2. What is the insulin sample recovery efficiency of immunocapture sample preparation like when compared to an SPE workflow?Insulin sample recovery of immunocapture depends on the antibody capture efficiency. Capture efficiency is affected by peptide sequences and structures. In our method, we use anti-insulin antibody as the capture antibody. We observe very high (>80%) recovery efficiency for native intact insulin, and slightly lower recovery efficiency for insulin analogues with different peptide sequences from the native insulin. Nevertheless, immunocapture sample recovery is higher than SPE recovery for native insulin and insulin analogues.
3. How easy is it to automate the BioBA kit on the Biomek workstation?See response to Q.1.
4. Is this use of magnetic beads a rugged method?Magnetic beads based sample preparation has become a very popular method for biosample analysis. The major advantages of using magnetic beads include the variety of antibody types that can be coated on the beads surface using streptavidin-biotin conjugation, the flexibility of beads usage amount, the ease of automation and assay robustness.
5. How do you measure anti-drug antibodies (ADA) using LC-MS knowing that the ADA is most of the time an unknown protein? i.e. no possibility to use a standard or a peptide.ADA are IgM, IgE and other IgG isotypes. The sequence information for these antibodies is known. In an MRM based peptide quantitation workflow, we have to know the protein/peptide sequences to create the MRM method. When the protein/peptide sequence is unknown, a protein identification experiment and protein database search each need to be processed first. Then an MRM based or SWATH® Acquisition method can be created for peptide quantitation. A stable isotope-labelled IgG can be used for quantitation of ADAs in plasma or serum.
6. How is peak asymmetry calculated with MultiQuant™ Software?In MultiQuant™ software, the parameter ‘Asymmetry Factor’ in the result table represents the peak asymmetry evaluation result. Asymmetry Factor is the distance from the centerline of the peak to the back slope, divided by the distance from the centerline of the peak to the front slope, with all measurements made at 10% of the maximum peak height. The closer this value is to 1; the more symmetric the peak shape is.
7. Can you comment on non-specific binding issues you may have observed, especially when dealing with both small and large molecules?We’ve often found the low-binding plastics work great for large molecules but terrible for small. Non-specific binding is the common issue observed for proteins, large peptide and other hydrophobic compounds. A few factors will affect non-specific binding, including sample storage (sample vial material, surface pretreatment), solvent components (organic percentage, pH, and modifier), matrix (complex matrix can eliminate non-specific binding) and sample preparation details (SPE: bedding size, pore size, pretreatment, wash buffer, elution condition; immunocapture: antibody-beads ratio, wash buffer). There are a few strategies to avoid non-specific binding by adding 0.1% BSA in the sample, saturating the reactive sites on LC, autosampler and column by repeated injection of 0.1% BSA samples before the sample analysis.
8. What sample volume do you use for insulin analysis?We usually use 200-250 µL human plasma per sample.
9. How long were your assay run times from beginning to end?We developed the sample preparation protocol to fit in 9-5 work day. Assay run time depends on the incubation time and the number of samples to prepare. For 96 samples, it takes about 6-6.5 hrs, including 3hrs for immunocapture (sample preparation, beads preparation, beads incubation and more) and 3-3.5 hrs for protein digestion (protein denaturation, reduction, alkylation and digestion).
10. What volume of plasma are you working with to achieve a 5 ng/mL LLOQ?It can be analyte dependent. For our mAb quantitation assay, we use 50 µL to 200 µL plasma to achieve 5 ng/mL LLOQ.
“Webinar Q&A Follow Up: ‘A Hybrid LBA/LC-MS Assay: Realize the Best of Both Worlds’.” Bioanalysis Zone, n.d. Web.
It is no secret that (bio)pharmaceutical research and development is complex, both scientific and regulatory processes. Here is an overview of just some of the ways SCIEX is working to support these challenges.
In a recent webinar, available on demand, scientists Luiza Chrojan and Ryan Hylands from Pharmaron, provided insights into the deployment of capillary gel electrophoresis (CGE) within cell and gene therapy. Luiza and Ryan shared purity data on plasmids used for adeno-associated virus (AAV) manufacturing and data on AAV genome integrity, viral protein (VP) purity and VP ratios using the BioPhase 8800 system.
Last year, Technology Networks hosted two webinars that featured groundbreaking research utilizing SWATH DIA (data-independent acquisition) for exposomics and metabolomics. Researchers Dr. Vinicius Verri Hernandes from the University of Vienna and Dr. Cristina Balcells from Imperial College London (ICL) demonstrated how a DIA approach can be successfully implemented in small molecule analysis using the ZenoTOF 7600 system. Their innovative approaches highlight the potential of SWATH DIA to enhance the detection and analysis of chemical exposures and metabolites, paving the way for new insights into environmental health and disease mechanisms.
Posted by
You must be logged in to post a comment.
Share this post with your network