GEN-MKT-18-7897-A
May 13, 2016 | Blogs, Food / Beverage | 0 comments
Recent regulations on food analysis require screening for pesticides using confirmatory techniques, such as GC-MS and LC-MS/MS. More than 1000 pesticides are used worldwide and, along with their metabolites and degradation products, are present in food. There is a demand for powerful and rapid analytical methods that can identify pesticides with high confidence in a broad range of food matrices and quantify at low concentrations with good accuracy and reproducibility. Challenges for pesticide residue laboratories at the moment are the request to test for more compounds, in a wider range of samples, all without sacrificing data quality. The QTRAP® 6500 LC-MS/MS system uses multi-component IonDrive™ technology to:
In addition, the QTRAP 6500 system uses the patented and proven Linear Accelerator™ trap technology to:
A new method for the quantitation and identification of hundreds of pesticides in food samples was developed and successfully applied to the analysis of complex food samples using the QTRAP 6500 system. Results are compared to QTRAP 5500 data. The increased sensitivity was used to extensively dilute sample extracts to eliminate ion suppression caused by matrix components and the extended linear dynamic range allowed quantifying more pesticides across a wider range of chemical properties. QTRAP scanning was used to investigate the presence of matrix components and to identify targets with high confidence through library searching. Quantitative and qualitative results were generated using MultiQuant™ and LibraryView™ Software.
See the results in the full article by downloading the Food Compendium.
Trifluoroacetic acid (TFA) is emerging as one of the most concerning ultrashort-chain PFAS in Europe’s food supply – particularly in cereals, a staple consumed daily by millions. A report from PAN Europe reveals a widespread and largely unmonitored contamination trend that raises serious questions about food safety, regulatory blind spots, and future monitoring strategies.
PFAS analysis is complex, but expert guidance doesn’t have to be. In this episode of our ‘Ask the PFAS expert series’, we’re joined by Michael Scherer, Application Lead for Food and Environmental, to answer the most pressing questions in PFAS analysis. From why LC-MS/MS systems are the gold standard for analyzing diverse PFAS compounds, to which EU methods deliver reliable results for drinking water, and to practical steps to prevent contamination, Michael shares actionable insights to help laboratories achieve accuracy, consistency, and confidence in their workflows.
During an LC-MS/MS experiment, traditional fragmentation techniques like collision-induced dissociation (CID) have long been the gold standard. Electron-activated dissociation (EAD) is emerging as a transformative tool that enhances structural elucidation, particularly for complex or labile metabolites.
Posted by
You must be logged in to post a comment.
Share this post with your network