GEN-MKT-18-7897-A
Jun 20, 2016 | Blogs, Environmental / Industrial, Food / Beverage | 0 comments
No other pesticide has courted more media attention and controversy in recent months than glyphosate, with governments and national agencies debating its use and health effects. The following links just show some of the media attention this organophosphorus compound has received:
Download Presentation >
However irrespective of whether it poses a risk or not the analysis of glyphosate and other polar compounds in food and beverage products has been a challenge. Attaining the required sensitivity, dealing with complex matrices and sample prep can put a serious strain and demand on your laboratory. A common practice for the analysis of glyphosate and the other associated polar compounds such as AMPA, Glufosinate, and MMPA is to derivatize the samples during the preparation.
The derivatization method may be effective however there is a serious efficiency problem associated with it, the time it takes the analysts to prep and extract the sample. Derivatization can be a time-consuming procedure and can, therefore, affect a lab’s productivity, turnaround, and margins.
In a recent presentation, on the QTRAP® 6500+ System, we conducted an in-depth evaluation into the Quantitation of Underivatized Glyphosate and Other Polar Pesticides. This comprehensive study details the various techniques and LC conditions that we tested on a variety of matrices. In this study, we show how the SelexION® reduces interferences and can meet your required levels of sensitivity.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Electron-Activated Dissociation (EAD) is transforming the fields of metabolomics and lipidomics by providing enhanced fragmentation techniques that offer deeper insights into molecular structures. In September, Technology Networks hosted a webinar, “Enhancing Mass-Based Omics Analysis in Model Organisms,” featuring Dr. Valentina Calabrese from the Institute of Analytical Sciences at the University of Lyon. Valentina shared her insights on improving omics-based mass spectrometry analysis for toxicology studies using model organisms, particularly in metabolomics and lipidomics. This blog explores the additional functionalities EAD offers, its benefits in untargeted workflows, its incorporation into GNPS and molecular networking, and the future role it could play in these scientific domains.
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has gained significant attention in the clinical laboratory due to its ability to provide best-in-class sensitivity and specificity for the detection of clinically relevant analytes across a wide range of assays. For clinical laboratories new to LC-MS/MS, integrating this technology into their daily routine operations may seem like a daunting task. Developing a clear outline and defining the requirements needed to implement LC-MS/MS into your daily operations is critical to maximize the productivity and success of your clinical laboratory.
Posted by
You must be logged in to post a comment.
Share this post with your network