Simplify Your Life with a Streamlined Workflow for Multiple Attribute Methodology (MAM)

May 14, 2018 | Biopharma, Blogs | 0 comments

The effort to fully characterize and release a biotherapeutic to the market can be onerous. Typically, many tests are required to identify and monitor various attributes of the final product in order to ensure the safety and efficacy of the drug. These product quality attributes, or PQAs, consist of things such as the extent and type of glycosylation, or the existence and level of other post-translational modifications. Due to the diverse nature of these PQAs, many assays are often required which can be time-consuming and burdensome.

Liquid Chromatography Mass Spectrometry (LC-MS) can help. With LC-MS, a Multiple Attribute Methodology (MAM) can enable the characterization and monitoring of many different PQAs within a single assay. One assay can measure sequence identity, modification levels, impurities, and more. Additionally, while many conventional assays indirectly measure the PQA of interest, the LC-MS workflow for MAM is a direct measure of each attribute. Every peak points to a distinct PQA so you can quickly determine which attribute is changing from sample to sample.

The basic premise of the LC-MS workflow for MAM involves comparison of a biotherapeutic sample with a reference standard and relies upon a technique called peptide mapping used extensively in protein and biotherapeutic research. To start, the biotherapeutic reference or sample is first enzymatically digested into a mixture of peptides. This mixture is then injected onto an LC column to separate the peptides into individual peaks using a high-resolution system such as the SCIEX ExionLC AD. The effluent from the column is fed directly into a high mass accuracy mass spectrometer, such as the SCIEX TripleTOF® 6600 System or X500B QTOF System where the accurate molecular weights of the components within each LC peak are measured. For the reference standard, MS/MS fragment data are also acquired in order to initially identify each component. The resultant data files contain the retention times, molecular weights, fragment data (for the reference standard), and quantities of each component in the digest. A software comparison of the reference data file with the sample data file highlights any differences between the two.

A key aspect for success with the LC-MS workflow for MAM is the accurate and comprehensive characterization of the reference standard. SCIEX uses a technique called SWATH® Acquisition to exhaustively detect every component within the reference standard so that a comprehensive reference archive can be created. As a data independent technique, SCIEX SWATH Acquisition has been shown to not only detect more components within proteolytic digests, but to also be more reproducible than conventional MS/MS strategies used elsewhere – even across different laboratories.1

Another key aspect for success is the power and ease of the data processing component. The SCIEX LC-MS workflow for MAM uses one software package, BioPharmaView™ Software, to both characterize the reference standard and perform comparison studies. BioPharmaView enables the identification of attributes, definition of acceptance criteria, and creation of standard methods for implementation. BioPharmaView is then used to monitor PQAs, known impurities, and can detect and flag new unspecified impurities within samples. A report is then created of all PQAs and impurities and whether they “passed” or “failed” based on the acceptance criteria. The use of one intuitive and easy-to-use package for all data processing greatly simplifies and streamlines a workflow for MAM. Additionally, the ability to detect new and unspecified impurities is a valuable and vital feature included with the SCIEX LC-MS workflow.

The pressure to meet timelines and provide new and more detailed information to regulatory agencies continues to place enormous demands on manufacturing and development. An LC-MS workflow for biotherapeutic characterization can greatly simplify the overall number of required assays while delivering a more comprehensive analysis of the product quality.

Fill out the form on the right to access an info kit which will help you learn more about how the SCIEX LC-MS MAM workflow can accelerate development and find out why your peers are already making the switch to LC-MS.

References

  1. Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Ben Collins, Christie Hunter, Yansheng Liu, Birgit Schilling, George Rosenberger, Samuel Bader, Daniel Chan, Bradford W. Gibson, Anne Claude Gingras, Jason Held, Mio Hirayama-Kurogi, Guixue Hou, Christoph Krisp, Brett Larsen, Liang Lin, Siqi Liu, Mark Molloy, Robert Moritz, Sumio Ohtsuki, Ralph Schlapbach, Nathalie Selevsek, Stefani Thomas, Shin Chen Tzeng, Hui Zhang, and Ruedi Aebersold, Nature Communications. 2017 Jun; 8 (291)

 

PFAS testing: 2024 in review and what to expect for 2025

For as long as PFAS persist in the environment, there is no doubt they will persist in our conversations as environmental scientists. Globally, PFAS contamination has been detected in water supplies, soil and even in the blood of people and wildlife. Different countries are at various stages of addressing PFAS contamination and many governments have set regulatory limits and are working on assessing the extent of contamination, cleaning up affected sites and researching safer alternatives.

Inside the box: Acoustic ejection mass spectrometry for drug discovery

On average, it takes 10-15 years and 1-2 billion dollars to approve a new pharmaceutical for clinical use. Since approximately 90% of new drug candidates fail in clinical development, the ability to make early, informed and accurate decisions on the safety and efficacy of new hits and leads is key to increasing the chances of success.

Unveiling the power of ZT Scan DIA: Insights from Ludwig Sinn’s presentation at World HUPO Congress 2024

In a recent presentation at the World HUPO Congress 2024, Ludwig Sinn from the Ralser lab shared exciting advancements in proteomics research, focusing on the innovative ZT Scan DIA acquisition modes developed in collaboration with SCIEX. Let us explore the key highlights and benefits of this innovative technology.

Posted by

Global Technical Marketing Manager, Biopharmaceuticals Sean M. McCarthy received his degree in Chemistry from the University of Vermont and has held several scientific and business development positions to address pharmaceutical and biopharmaceutical characterization. Sean is currently the Business Development Manager of Biologics at SCIEX, where his focus is on delivering targeted solutions for biopharmaceutical characterization, with emphasis on process analytics and development.

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial