Bad Leftovers: Antibiotic Residues in Food

Jun 20, 2019 | Blogs, Food / Beverage | 0 comments

We know that antibiotics used to treat livestock can end up in the food we eat. Routine food testing labs are essential for detecting compounds, like these, that can be dangerous to our health. Antibiotic residues include both parent molecules and metabolites left over in the animal’s body after treatment. They are a class of compound that causes a lot of concern. Using antibiotics in livestock, and its alarming connection to antibiotic-resistant bacteria is not a new topic. Antibiotic resistance is known as a global threat to human health. Many countries have ongoing efforts to both stop the overuse of antibiotics and to keep track of the effect of antibiotic-resistant bacteria on the population.

Antibiotic residues in food that comes from animals are a complex threat. Antibiotics are used to promote growth and to stop microbial infections in livestock. The more times the bacteria get a non-lethal dose of the antibiotic, the more likely they are to become immune to that antibiotic. A similar thing happens when humans consume food products from the treated livestock that contain residues of these antibiotics. The exposure can increase the chance of antibiotic resistance, transfer resistant bacteria to humans, and cause problems in people with hypersensitivity to the antibiotic. Hundreds of thousands of people die globally from infections caused by antibiotic-resistant bacteria each year.

Many countries have set tolerance limits (or maximum residue limits) for antibiotic residues in food products. Keeping human exposure below the maximum residue limits is the main goal of routine food testing. It is important to accurately monitor these levels for the sake of public safety. Robust and reliable analytical methods are required. Detecting multiple antibiotics with a single analytical method increases the efficiency of the monitoring. Methods that meet the performance levels required by regulatory agencies are also essential.

The SCIEX Solution for Routine Testing Labs
LC-MS/MS technology is a valuable tool to help fight the threat of antibiotic resistance. A complete analytical solution includes hardware, software, and a proven method to produce reliable LC-MS/MS data. An ideal method achieves the selectivity and sensitivity required to meet regulatory requirements. It also minimizes sample preparation and detects multiple analytes for increased throughput.

Find out how the SCIEX Triple Quad™ 3500 System with Turbo V™ source and MultiQuant™ software can help reduce exposure to antibiotic residues in our food. Complete the form on your right to access practical applications performed on the TripleQuad 3500 System including a method to analyze chloramphenicol and tetracyclines in honey, milk, meat, and shrimp.

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Unlocking precision: navigating data conversion in metabolomics

Useful FAQ document to enable researchers to focus on their scientific discoveries and insights rather than the complexities of data management.

Understanding PFAS and its impact on U.S. drinking water

In recent years, per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals,” have become a growing topic of interest due to their persistence in the environment and potential health risks. These synthetic compounds have been widely used in various industrial applications and consumer products since the 1940s. PFAS can be found in the air, soil, and water, and studies have shown that most people have detectable levels of PFAS in their bloodstream. One of the main exposure pathways for humans is through drinking water, particularly in communities located near industrial sites, military bases, or areas where firefighting foam has been used.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial