GEN-MKT-18-7897-A
Oct 15, 2019 | Blogs, Food / Beverage | 0 comments
One question I get asked a lot when it comes to cannabis, specifically regarding marijuana and hemp analysis, is: There are so many techniques to choose from, how do I know which one is best?
I can’t emphasize enough that the Cannabis sativa plant has a complex biological profile with hundreds of chemical entities at varying concentrations. These include both cannabidiol (CBD) and tetrahydrocannabinol (THC).
Because of the complexity of the samples, cannabis labs should consider employing an instrument system that can handle multiple workflows, such as those for potency analysis, pesticide testing, mycotoxin analysis and terpenes profiling. The system also needs to isolate and identify as many compounds as possible and to detect very low concentrations (in the parts per million or parts per billion range).
Before I continue, I should say that there is no perfect method for cannabis testing. Different technologies can impact the quality of your data. One approach can be more effective than another. It depends on the needs of your laboratory. Nevertheless, the characteristics of an ideal analytical technique remain the same: high sensitivity, selectivity, and specificity.
Let’s explore well-known techniques used to analyze marijuana and hemp for pesticides, potency, mycotoxins and terpenes.
Sample separation strategies
Quantitative methods
So, my answer to the original question is that the best method involves using HPLC with a dual-detector combination of UV and tandem mass spectrometry (MS/MS) to analyze cannabinoids. It is a highly effective approach. Check out this technical note our team put together that demonstrates this approach to quantifying cannabinoids in marijuana and hemp.
As analytical organizations grow, there is an even greater need to train scientists and operators more consistently to meet tight deadlines, handle increasing samples, and meet data quality expectations. A high rate of employee turnover also affects the productivity of labs worldwide. Consistent training helps today’s labs stay competitive, whether the goal is sample throughput, therapeutic development, or publication.
A few years ago, I was plotting along in my analytical job and keeping up-to-date with residue regulations took a considerable amount of time, but it was always manageable. Nowadays, we have PFAS.
Produced by certain moulds, thriving in crops such as grain, nuts and coffee, mycotoxins have contaminated agriculture and food production industries for a long time. To intensify the challenge, mycotoxins are resilient, not easily broken down and ensuring the safety of food supply chains requires comprehensive solutions and we are here to share those solutions with you.
Posted by
You must be logged in to post a comment.
Share this post with your network