What have we learned from the nitrosamine crisis?

Jan 30, 2023 | Blogs, Development, Pharma, QA/QC | 0 comments

The pharmaceutical industry is facing an ongoing issue with genotoxic impurities (GTIs).  Over the past year, we have witnessed genotoxic impurities affect several drugs, including those used to treat elevated blood pressure, heartburn and acid reflux. Angiotensin II receptor blockers (including valsartan, losartan and irbesartan), along with ranitidine and nizatidine, were recalled to investigate several potentially cancer-causing substances, called nitrosamines. The FDA knows this is an issue that has resulted in regulatory actions and loss of revenue for the manufacturers.

Amid this crisis, companies are realizing they need to address the wider issue of active pharmaceutical ingredient (APIs) quality for drugs currently on the market. Companies must concern themselves with the accurate identification, quantification, and monitoring of impurity levels. They must take a proactive approach to verify the quality of the product and the materials used in the manufacturing.

The regulators currently require this type of quality analysis for those products affected by the nitrosamine crisis. The requirement is not just for the GTIs, but also for the other products and processes in the manufacturer’s portfolio and pipeline. Both the FDA and European Medicines Agency have issued guidance for the impurity detection levels in the angiotensin II receptor blocker based on daily dosage, but the quantitative limit of detection will become even more challenging—going to 0.03 ppm by early 2021. The ability to reach that level of detection will require the highest levels of sensitivity, to help ensure that manufacturers can verify final products before they go to market.

You can learn more about how LC-MS/MS solutions can identify, quantify and monitor the required levels of nitrosamine impurities by accessing technical notes and a webinar addressing the characterization and quantification of the genotoxic impuritiesLearn More >

This blog is part 1 of a 3-part series on nitrosamine analysis. Read part 2 (Are we proactively solving the nitrosamine crisis?) and part 3 (Developing a method for nitrosamine analysis in pharmaceutical products).

 

What has the Echo® MS system done for the pharma industry? (And don’t just take our word for it!)

SCIEX was very proud to have an illustration of the Acoustic Ejection Mass Spectrometry (AEMS) technology that powers the Echo® MS system on the front cover of the Journal of the American Society for Mass Spectrometry in January 2023. The associated article—Ultrahigh-Throughput Intact Protein Analysis with Acoustic Ejection Mass Spectrometry—was co-authored by scientists from SCIEX and Merck.

5 Reasons to Choose the Echo® MS system for high-throughput drug discovery

Have you thought about introducing new technology into your high-throughput drug discovery lab? Here are 5 reasons the Echo® MS system could make a difference for you.

The age of novel psychoactive substances

Novel psychoactive substances (NPS) are compounds designed to mimic existing recreational drugs. The emergence of NPS has changed the landscape of the synthetic drug market. While previously the market had a limited number of compounds belonging to a few chemical groups, with NPS it now has hundreds of compounds. The European Monitoring Center for Drugs and Drug Addiction is currently monitoring 730 substances, with more being identified each year.

Posted by

Neil Walsh is the Senior Manager for Pharma global strategic marketing at SCIEX. In this role, he manages both the strategic market and marketing for the pharmaceutical industry. Neil has spent all his working life entrenched in the pharmaceutical industry from active research, sales and business development through to strategic marketing. Outside of work Neil enjoys rugby, cycling and spending time with his family

Tags


0 Comments

Submit a Comment