GEN-MKT-18-7897-A
Jul 20, 2018 | Biopharma, Blogs | 0 comments
Launching the best possible product in the shortest time possible is key for pharmaceutical companies like you. As you know, nearly every process throughout the biologics development cycle requires an immense amount of analytical characterization; get these processes right and significantly reduce time-to-market.
This blog explores a wide range of biologics characterizations, including intact and subunit protein analysis, to help you address your challenges. For more details, fill out the form on your right to download the full Biotherapeutic Analytical Characterization eBook.
Safeguarding Biotherapeutic Product QualityThe ability to routinely and accurately measure intact and subunit protein mass is a critical step in demonstrating the quality and stability of biologics. Using the appropriate combination analytical methods and techniques can result in significant time and cost savings during product development, obtaining regulatory approval and scaling-up manufacturing.
But biotherapeutics are inherently complex and these large class protein biologics, such as monoclonal antibodies (mAb), are significantly more difficult to characterize than small molecules. Liquid Chromatography-Mass Spectrometry (LC-MS) and Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CESI-MS) have become recognized techniques for biotherapeutic characterization, offering the resolution, sensitivity, and speed to deliver better results and improve lab productivity.
The Complete Range from SCIEXSCIEX has a range of next-generation technology with the mass range and dynamic range needed to simultaneously detect major and minor isoforms in your intact biotherapeutic. The easy, point-and-click interface of SCIEX OS on the X500B QTOF system makes setup rapid and simple. Or dig deeper into your biotherapeutic products with the high-performance TripleTOF® 6600 System. Our BioPharmaView™ Software balances power and simplicity to bring routine, fast and accurate intact and subunit analysis by mass spectrometry to all laboratories1.
We demonstrate the pure performance, robustness, and stability of our solutions in the Biotherapeutic Analytical Characterization eBook, packed with a range of tech notes and solutions guides, covering:
If you want to accelerate the biologics development cycle and reduce your time-to-market with fast, accurate, and robust intact and subunit mass analysis, fill out the form on your right to download the Biotherapeutic Analytical Characterization eBook.
1https://www.technologynetworks.com/biopharma/articles/mass-spectrometry-in-biopharmaceutical-discovery-303219
With the launch of the ZenoTOF 8600 system, EAD has taken a significant leap forward in becoming a routine tool for metabolomics and lipidomics workflows. Building on the foundation laid by the ZenoTOF 7600 system, the 8600 system introduces enhanced sensitivity, function speed improvements, and multimodal capabilities that make EAD more practical and scalable for daily use. This blog explores how these advancements are transforming EAD from a specialized technique into a robust and accessible solution for high-throughput structural analysis, enabling researchers to unlock deeper insights with greater efficiency.
In your lab, time is not just a resource. It’s a necessity and every moment counts. Yet, unplanned downtime can disrupt this delicate balance. Even a brief interruption can set your team back in multiple ways.
In a recent webinar, which is now available on-demand, Holly Lee powerful strategies to tackle complex residue testing. From boosting throughput to fine-tuning method sensitivity, Holly shared key ways to maximize performance across large pesticide panels.
Posted by
You must be logged in to post a comment.
Share this post with your network