Biologics Characterization: Intact and Subunit Mass Analysis

Jul 20, 2018 | Biopharma, Blogs | 0 comments

When All You Need Is Range – Mass Range, Dynamic Range, and the Complete Range

Launching the best possible product in the shortest time possible is key for pharmaceutical companies like you. As you know, nearly every process throughout the biologics development cycle requires an immense amount of analytical characterization; get these processes right and significantly reduce time-to-market.

This blog explores a wide range of biologics characterizations, including intact and subunit protein analysis, to help you address your challenges. For more details, fill out the form on your right to download the full Biotherapeutic Analytical Characterization eBook.

Safeguarding Biotherapeutic Product Quality
The ability to routinely and accurately measure intact and subunit protein mass is a critical step in demonstrating the quality and stability of biologics. Using the appropriate combination analytical methods and techniques can result in significant time and cost savings during product development, obtaining regulatory approval and scaling-up manufacturing.

But biotherapeutics are inherently complex and these large class protein biologics, such as monoclonal antibodies (mAb), are significantly more difficult to characterize than small molecules. Liquid Chromatography-Mass Spectrometry (LC-MS) and Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry (CESI-MS) have become recognized techniques for biotherapeutic characterization, offering the resolution, sensitivity, and speed to deliver better results and improve lab productivity.

The Complete Range from SCIEX
SCIEX has a range of next-generation technology with the mass range and dynamic range needed to simultaneously detect major and minor isoforms in your intact biotherapeutic. The easy, point-and-click interface of SCIEX OS on the X500B QTOF system makes setup rapid and simple. Or dig deeper into your biotherapeutic products with the high-performance TripleTOF® 6600 System. Our BioPharmaView™ Software balances power and simplicity to bring routine, fast and accurate intact and subunit analysis by mass spectrometry to all laboratories1.

We demonstrate the pure performance, robustness, and stability of our solutions in the Biotherapeutic Analytical Characterization eBook, packed with a range of tech notes and solutions guides, covering:

  • Intact Mass Analysis without Compromise on TripleTOF Mass Spectrometry Platforms
  • Detection of Intact Antibody Impurities
  • Analysis of Intact mAbs using MicroLC with the TripleTOF 6600 System
  • Comparative Multi-Supplier Lot Analysis of Trastuzumab using Subunit Analysis
  • Monitoring Antibody Oxidation at the Subunit Level
  • Structural Characterization of ADCs by Combination of Intact, Middle-Up and Bottom-Up Approaches

If you want to accelerate the biologics development cycle and reduce your time-to-market with fast, accurate, and robust intact and subunit mass analysis, fill out the form on your right to download the Biotherapeutic Analytical Characterization eBook.

1https://www.technologynetworks.com/biopharma/articles/mass-spectrometry-in-biopharmaceutical-discovery-303219

Plasmid manufacturing: Setting up your CGT programs for success

Plasmid DNA serves a variety of purposes, from critical starting material for proteins, mRNA, viral vectors, and drug substances. Below, Dr. Emma Bjorgum, the Vice President of Client Services of the DNA Business Unit at Aldevron and an expert in plasmid manufacturing, provided insights into the process and an outlook on the future.

Unlocking precision: navigating data conversion in metabolomics

Useful FAQ document to enable researchers to focus on their scientific discoveries and insights rather than the complexities of data management.

Understanding PFAS and its impact on U.S. drinking water

In recent years, per- and polyfluoroalkyl substances (PFAS), often referred to as “forever chemicals,” have become a growing topic of interest due to their persistence in the environment and potential health risks. These synthetic compounds have been widely used in various industrial applications and consumer products since the 1940s. PFAS can be found in the air, soil, and water, and studies have shown that most people have detectable levels of PFAS in their bloodstream. One of the main exposure pathways for humans is through drinking water, particularly in communities located near industrial sites, military bases, or areas where firefighting foam has been used.

Posted by

0 Comments

Submit a Comment

Wordpress Social Share Plugin powered by Ultimatelysocial